Coarticulatory influences of liquids on vowels in English

Alison Tunley
King’s College

A dissertation submitted in candidature for the degree of
Doctor of Philosophy

Department of Linguistics
University of Cambridge
April 1999
Declaration

I hereby declare that this thesis is not substantially the same as any that I have submitted for a degree or diploma or other qualification at any other university.

I further state that no part of my thesis has already been or is being currently submitted for any such degree, diploma or other qualification.

This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration.

This thesis does not exceed 80,000 words, including footnotes, references and appendices, but excluding bibliographies.
Summary

This thesis explores the coarticulatory influence of /r/ and /l/ on vowels, locally in VC and CV sequences and over a longer domain where the vowel is separated from the influencing consonant by two other segments. The primary motivation behind the production studies is to improve the quality of rule-generated synthetic speech. Even high quality synthetic speech is immediately recognizable as being computer-generated; such speech is hard to understand in noisy listening conditions and requires significantly more cognitive processing effort than natural speech. One contributor to this inferior quality is the absence in the synthetic speech signal of subtle but systematic context-induced acoustic detail. Although a great deal of work has been done on coarticulatory variation, there has been rather little exploration of long-domain coarticulatory effects or of the interaction between metrical and segmental factors which influence patterns of coarticulatory variation.

The production studies in this thesis provide detailed information regarding the influence of liquids on surrounding vowels and thus are a starting point for perceptual studies assessing the contribution of such acoustic detail to the quality of synthetic speech. Factors such as stress and vowel quality are varied to establish criteria which favour or discourage the spread of coarticulatory influence. The interaction between metrical and segmental factors is explored by looking at stressed and unstressed CV sequences in feet of different lengths and in different positions in the foot. More complex segmental influences on coarticulatory behaviour are examined by incorporating /r/s and /l/s in consonant clusters.

A perceptual experiment is conducted to assess the salience of some of the coarticulatory variation described in the thesis. The experiment shows that incorporating coarticulatory detail in synthetic speech spread over /ə r V C ə/ sequences can improve segmental intelligibility by 7–28%. The degree to which such coarticulatory detail contributes to intelligibility is partially dependent on lexical effects, in that the biggest improvements in intelligibility after including coarticulatory detail were found for nonsense words, with rather smaller improvements for monosyllabic and polysyllabic real words.
Thanks

For financial support I am grateful to the British Academy, the Newton Trust and King’s College.

I am grateful to my supervisor, Sarah Hawkins for her guidance in all aspects of this project. Thanks also to Geoffrey Potter, the Phonetics Laboratory technician, for his enduring patience and good humour and help with a variety of technical problems.

Without the support of the Phonetics lab posse this thesis would never have been finished. In particular, thanks to Jonathan Rodgers for guru tricks, the \LaTeX books and many laughs, and to Kimberley Farrar, Eric Fixmer and Elinor Payne for great coffee breaks. Many other friends have also kept me going; they know who they are and I owe them all a lot of beer. Finally, thanks go to Daniel for keeping me sane and reminding me constantly about what’s really important in life.
Note

SSBE stands for Standard Southern British English

Statistical significance is taken to be $p \leq 0.05$
Detail matters

“You need a certain amount of complexity to do any particular job. A Saturn V rocket is said to have had seven million parts, all of which had to work. That’s not entirely true. Many of those parts were redundant. But that redundancy was absolutely necessary to achieve the goal of putting someone on the moon in 1969. So if some of those rocket parts had the job of being redundant, then each of those parts still had to do their part. So to speak. They also serve who only stand and wait.

We betray ourselves when we say *That’s redundant*, meaning *That’s useless*. Redundancy is not always redundant, whether you’re talking about rockets or human languages or computer languages. In short, simplicity is often the enemy of success.”

Larry Wall, August 25th 1998
2nd State of the Onion
at http://www.perl.com
Contents

List of Figures ... x

List of Tables .. xii

1 Introduction ... 1
 1.1 Background ... 1
 1.2 Acoustic variation and speech perception 2
 1.3 Speech synthesis ... 4
 1.3.1 Processing problems in synthetic speech 5
 1.3.2 Relating naturalness, intelligibility and comprehension ... 9
 1.4 Overview of thesis ... 11

2 Influence of liquids on following vowels 14
 2.1 Introduction ... 14
 2.1.1 On the coarticulatory resistance of /i/ 14
 2.1.2 Language- and accent-specific differences 16
 2.1.3 Resolving contradictions over variability of /i/ 18
 2.2 Research Questions ... 19
 2.3 Materials ... 19
 2.4 Recording ... 21
 2.5 Measurements and statistical analysis 22
 2.5.1 Measuring formant frequencies in vowels 22
 2.5.2 Measuring formant frequencies in consonants 24
 2.5.3 Measuring formant frequencies in schwa 24
 2.6 Results and Discussion .. 25
 2.6.1 Consonant to vowel coarticulation in CV sequences ... 25
 2.6.2 Anticipatory vowel coarticulation in consonants in CV sequences ... 28
 2.6.3 Spread of consonant-induced coarticulation to non-adjacent schwa .. 31
 2.7 Summary and conclusions .. 33

3 Intelligibility of synthetic speech 36
 3.1 Introduction to Perceptual Testing 36
 3.2 Hypotheses and sentence design 38
 3.3 Synthesis of the test sentences 41
CONTENTS

3.3.1 Background to synthesis process .. 41
3.3.2 Incorporating coarticulatory detail in vowels in Set B 42
3.3.3 Incorporating coarticulatory detail in schwas in Set B 44
3.3.4 Incorporating coarticulatory detail in consonants in Set B .. 45
3.3.5 Incorporating coarticulatory detail in Sets A and C 46
3.4 Filler sentences .. 47
3.5 Adding noise to the speech stimuli 47
3.6 Experimental tapes: design considerations 49
3.6.1 Statistical Analysis .. 50
3.7 Subjects ... 52
3.8 Procedure .. 52
3.9 Results and Discussion .. 52
3.9.1 The r-syllable results ... 55
3.10 Summary and conclusions .. 57
3.10.1 Speech style ... 58
3.10.2 Implications for synthesis applications 59

4 Temporal course of rhotic resonance effects 62
4.1 Introduction ... 62
4.2 Experimental Design .. 63
4.2.1 Independent variables ... 63
4.2.2 Hypotheses and Questions ... 65
4.2.3 Sentences .. 65
4.3 Recording ... 69
4.4 Measurements and statistical analysis 69
4.5 Results and Discussion .. 70
4.5.1 r-colouring in adjacent vowels ... 70
4.5.2 Vowel-to-vowel coarticulation ... 72
4.5.3 r-colouring in non-adjacent stressed vowels 74
4.5.4 r-colouring in non-adjacent unstressed vowels 75
4.6 Summary and conclusions ... 78

5 Coarticulation after consonant clusters 84
5.1 Introduction ... 84
5.2 Research Questions .. 85
5.3 Materials ... 86
5.4 Recording .. 86
5.5 Measurements and statistical analysis 86
5.6 Results and Discussion .. 88
5.6.1 Spectral characteristics of vowels after a variety of syllable onsets . 88
5.6.2 Durational properties of vowels after a variety of syllable onsets ... 91
5.6.3 Conclusions for vowel data ... 93
5.7 Realization of consonants in clusters 95
5.7.1 Realization of /r/ in consonant clusters 95
5.7.2 Realization of alveolars and velars in /Cr/ and /sCr/ sequences ... 100
5.7.3 Realization of /l/ in consonant clusters .. 103
5.7.4 Summary of EPG and acoustic data for consonants 104
5.8 Summary and conclusions .. 105

6 Metrical influences on liquid coarticulation 107
6.1 Introduction .. 107
6.2 Research Questions ... 109
 6.2.1 Hypotheses relating to foot-length .. 109
 6.2.2 Hypotheses relating to syllable’s position in the foot 110
6.3 Materials ... 110
 6.3.1 Exploring foot-length and syllable compression 110
 6.3.2 Exploring the impact of syllable position in the foot 111
6.4 Recording ... 111
6.5 Measurements and Analysis .. 115
6.6 Results and Discussion .. 115
 6.6.1 The effect of foot-length on vowel durations 115
 6.6.2 The effect of foot-length on spectral properties of vowels 116
 6.6.3 The effect of syllable position in the foot on coarticulation 121
6.7 Summary and Conclusions .. 122

7 Concluding Remarks ... 125
7.1 Susceptibility to coarticulatory influence 126
7.2 Long-domain rhotic resonance effects ... 127
7.3 Temporal variation and coarticulatory effects 130
 7.3.1 Segmental influences on timing .. 130
 7.3.2 Metrical influences on timing .. 130
 7.3.3 Summary: Temporal variation and coarticulatory effects 131
7.4 Perceptual salience of coarticulatory detail 132
 7.4.1 Lexical influences on the salience of coarticulatory detail 132
 7.4.2 Perceptual coherence and perceptual testing 133
 7.4.3 Importance of sensitive and application-oriented perceptual testing 136
7.5 Afterword: Combined influences on r-colouring 137

A Pre-synthesis production study ... 139
 A.1 Background to recording .. 139
 A.2 Measurements .. 140
 A.3 Results ... 140

B Acoustic data for isolated vowels .. 144
 B.1 Background ... 144
 B.2 Results .. 145
List of Figures

1.1 Intelligibility of natural and synthetic speech in noise 6
2.1 Schematized outline of experiment ... 20
2.2 Spectrogram of the utterance the reap 23
2.3 F2 and F3 in vowels in /h/, /l/ and /r/ contexts 25
2.4 F2 and F3 in vowels in /hV/ and /rV/ 26
2.5 F2 and F3 in vowels in /hV/ and /IV/ 28
2.6 F2 and F3 in /h/, /l/ and /r/ ... 29
2.7 F2 in schwa in preceding vowel contexts 32
2.8 Schematized spectrograms of /hV/, /IV/ and /rV/ 34
2.9 Schematized spectrograms of /ri, rI, re, ræ/ 35
3.1 Schematized outline of sequence of interest 38
3.2 Schema for design of perceptual experiment 51
3.3 % phonemes correct for rule and edited forms 53
3.4 % phonemes correct for rule and edited forms of r-context words 55
3.5 % phonemes correct for rule and edited forms of r-context words for each word set .. 56
4.1 Schematized outline of sequences of interest in long-domain experiment .. 63
4.2 F2, F3 and F4 in vowels in /Vr/, /rV/, /Vh/ and /hV/ 71
4.3 F2, F3 and F4 in vowels adjacent to /r/ or /h/ in stressed or unstressed neighbouring contexts ... 73
4.4 Schematized spectrograms of vowels adjacent to /r/ or /h/ 74
4.5 F2, F3 and F4 in unstressed vowels in non-adjacent /r/ and /h/ contexts 75
4.6 F2, F3 and F4 in unstressed /iə/ in non-adjacent /r/ and /h/ contexts 77
4.7 F2, F3 and F4 in non-adj. unstr. vowels by stress of influencing syllable 78
4.8 F2, F3 and F4 in non-adj. unstr. vowels by direction of influence 79
5.1 F2, F3 and F4 in Hz in vowels after consonant clusters 88
5.2 F2, F3 and F4 in ERBs in vowels after consonant clusters 90
5.3 Vowel duration after various syllable onsets 92
5.4 Controlled words: vowel durations after various syllable onsets 94
5.5 Spectrograms of /ri:/, /kri:/ and /skri:/ 96
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Layout of palate used in EPG data collection.</td>
<td>97</td>
</tr>
<tr>
<td>5.7</td>
<td>EPG patterns for /r/ in different syllable onsets.</td>
<td>98</td>
</tr>
<tr>
<td>5.8</td>
<td>EPG patterns for /t/ in different syllable onsets.</td>
<td>99</td>
</tr>
<tr>
<td>5.9</td>
<td>EPG patterns for /k/ in different syllable onsets.</td>
<td>100</td>
</tr>
<tr>
<td>5.10</td>
<td>EPG patterns for /l/ in different syllable onsets.</td>
<td>101</td>
</tr>
<tr>
<td>5.11</td>
<td>EPG patterns for /l/ in different syllable onsets.</td>
<td>104</td>
</tr>
<tr>
<td>6.1</td>
<td>Stressed and unstressed sequences of interest in foot-length experiment.</td>
<td>111</td>
</tr>
<tr>
<td>6.2</td>
<td>Duration of syllable nuclei in feet of different lengths.</td>
<td>116</td>
</tr>
<tr>
<td>6.3</td>
<td>F2, F3 and F4 in unstressed /rV/ and /IV/ in feet of different lengths.</td>
<td>118</td>
</tr>
<tr>
<td>6.4</td>
<td>F2, F3 and F4 in syllables in different positions in the foot.</td>
<td>121</td>
</tr>
<tr>
<td>7.1</td>
<td>Sequences which differ in their propensity to allow r-colouring to spread.</td>
<td>138</td>
</tr>
<tr>
<td>A.1</td>
<td>Schematized outline of sequence of interest.</td>
<td>140</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sentences</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Fillers</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Planned comparisons for factor consonant</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Planned comparisons for F2 and F3 in vowels in /h/ and (/r)/ contexts</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Planned comparisons for F2 and F3 for vowels in /h/ and (/l)/ contexts</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Planned comparisons for F2 and F3 in /h, /l/ and (/r)/ in each vowel context</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Planned comparisons for F2 and F3 in schwa in /h/ and (/r)/ contexts</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Planned comparisons for F2 in schwa</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>F2 & F3 in schwa in /h/ and (/r)/ contexts, individual speakers</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Sentences used in perceptual experiment</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Calculation of ‘co-articulated’ formant frequencies</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Fillers for perceptual experiment</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Practice sentences for perceptual experiment</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>% phonemes correct for individual rule and edited l-context words</td>
<td>54</td>
</tr>
<tr>
<td>3.6</td>
<td>% difference phonemes correct for individual words</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Independent variables for long-domain experiment</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Stress patterns for anticipatory r-colouring sequences</td>
<td>64</td>
</tr>
<tr>
<td>4.3</td>
<td>Sentences for long-domain experiment: Anticipatory effects</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Sentences for long-domain experiment: Perseverative effects</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Difference in F2, F3 and F4 in /l/ and /(/a)/ between /h/ and /(/r)/ contexts</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>F2, F3 and F4 for stressed non-adjacent vowels</td>
<td>75</td>
</tr>
<tr>
<td>5.1</td>
<td>Sentences for cluster experiment</td>
<td>87</td>
</tr>
<tr>
<td>5.2</td>
<td>Planned comparisons for F2, F3 and F4 in vowels after consonant clusters</td>
<td>89</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of formant frequency variation in synthesis and natural speech</td>
<td>91</td>
</tr>
<tr>
<td>5.4</td>
<td>Planned comparisons for vowel durations after consonant clusters</td>
<td>92</td>
</tr>
<tr>
<td>5.5</td>
<td>Subset of controlled words from cluster experiment</td>
<td>93</td>
</tr>
<tr>
<td>5.6</td>
<td>Words recorded for EPG analysis of /(/r)/</td>
<td>97</td>
</tr>
<tr>
<td>5.7</td>
<td>F2 at velar burst in different contexts</td>
<td>102</td>
</tr>
<tr>
<td>5.8</td>
<td>Words recorded for EPG analysis of /l/</td>
<td>103</td>
</tr>
<tr>
<td>6.1</td>
<td>Sentences: Foot-length and stressed syllables</td>
<td>112</td>
</tr>
<tr>
<td>Table Number</td>
<td>Table Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.2</td>
<td>Sentences: Foot-length and unstressed syllables</td>
<td>113</td>
</tr>
<tr>
<td>6.3</td>
<td>Sentences: Position of syllable in foot</td>
<td>114</td>
</tr>
<tr>
<td>6.4</td>
<td>F2, F3 and F4 in stressed vowels in feet of different lengths</td>
<td>117</td>
</tr>
<tr>
<td>6.5</td>
<td>F2 in individual vowels in different positions in the foot</td>
<td>122</td>
</tr>
<tr>
<td>A.1</td>
<td>Fillers used in pre-synthesis production study</td>
<td>139</td>
</tr>
<tr>
<td>A.2</td>
<td>F2 and F3 in vowels in /h/, /l/ and /r/ contexts</td>
<td>141</td>
</tr>
<tr>
<td>A.3</td>
<td>F2 and F3 in /h/, /l/ and /r/ in different vowel contexts</td>
<td>142</td>
</tr>
<tr>
<td>A.4</td>
<td>F2 and F3 in /ə₁/ in different vowel and consonant contexts</td>
<td>142</td>
</tr>
<tr>
<td>A.5</td>
<td>F2 and F3 in /ə₂/ in different vowel and consonant contexts</td>
<td>143</td>
</tr>
<tr>
<td>B.1</td>
<td>F1, F2 and F3 in isolated vowels from a single speaker</td>
<td>145</td>
</tr>
<tr>
<td>B.2</td>
<td>F1, F2 and F3 in vowels in real words from a single speaker</td>
<td>145</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Background

This thesis explores the coarticulatory influence of /r/ and /l/ on vowels, locally in VC and CV sequences and over a longer domain where the vowel is separated from the influencing consonant by two other segments. The primary motivation behind the production studies is to improve the quality of rule-generated synthetic speech. Even high quality synthetic speech is recognizable as being computer-generated. The difference between rule-generated synthetic speech and natural speech is often immediately apparent, and is always noticeable in longer utterances, unless these have been specifically improved, for instance by hand-editing the acoustic signal. Synthetic speech is hard to understand in noisy listening conditions and requires significantly more cognitive processing effort than natural speech. One contributor to this inferior quality is the absence in the synthetic speech signal of subtle but systematic context-induced acoustic detail. Although a great deal of work has been done on coarticulatory variation, there has been rather little exploration of long-domain coarticulatory effects or of the interaction between metrical and segmental factors which influence patterns of coarticulatory variation. Certainly these kinds of effects are not routinely included in the rules for text-to-speech synthesis systems. This thesis documents some of these small-scale coarticulatory effects, and one experiment examines the contribution they make to the intelligibility of formant synthesis.
CHAPTER 1. INTRODUCTION

1.2 Acoustic variation and speech perception

Acoustic variability has traditionally been regarded as posing a problem for the process of speech perception (cf. Stevens and Blumstein 1978, Klatt 1986). The question has been: how do listeners get from the variable acoustic signal to a set of invariant phonemes, or features, or words, or whatever the unit of perception might be? Variation in speech was seen as noise, a hindrance to the successful decoding of the signal. Researchers sought to establish how listeners simplified the complex acoustic signal to achieve lexical access. As Goldinger (1997, p34) puts it, “perception was theorized to entail information reduction, such that successive stages of information processing derive progressively more abstract representations of analog inputs”. Nowadays a number of researchers believe that quite the opposite of this is true; that systematic variability in the speech signal actually contributes to successful lexical access (cf. Warren and Marslen-Wilson 1987). Miller (1994) claims that listeners’ representation of phonetic forms includes, not only categorical information, but also fine-grained information about the detailed acoustic phonetic characteristics of the language.

The role of acoustic cue-trading in speech perception is perhaps most famously demonstrated in an experiment by Lisker, who finds 16 potential cues to voicing in English, although a subset of these carry greatest significance (Lisker 1986). Similarly Elman and McClelland (1986) emphasise the role that acoustic variation has in aiding lexical access in their TRACE model of speech perception. This allows for knowledge about one phoneme to help identify another, directly taking advantage of context-induced variation in the signal. Oden and Massaro (1978) adopt an approach from outside the speech domain to cope with this abundance of acoustic (and other) information in their model of speech perception, favouring what is described as a fuzzy-logical approach. The most important feature of such a model for our purposes is that it allows for the simultaneous evaluation and integration of multiple cues. The model explicitly embraces all potentially useful pieces of information from visual, to acoustic to contextual cues (cf. also Massaro and Oden 1980, Massaro 1987). Pisoni (1997b) is among several researchers to argue for a non-analytic approach to speech perception, which accommodates stimulus variability by assuming that it is a lawful and highly informative source of information for the perception process.

This kind of approach to speech perception suggests that the most intelligible speech is precisely that which is produced by a human vocal tract, complete with all the
variation that is an inevitable consequence of connected speech processes. The detail in the acoustic signal which has been shown to be perceptually useful is the systematic variability which arises due to properties of the vocal tract and which, therefore, provides a link between the continuously varying speech signal and the linguistic message which is the end-product of the perception process.

Individual languages differ in the degree of context-induced variation they permit (Manuel 1990) and language-specific coarticulatory effects such as these may contribute to perception, inasmuch as they are systematic and therefore ‘expected’ by listeners. Individual speakers also have a great deal of control over coarticulatory behaviour (Lubker and Gay 1982, Nolan 1985, Keating 1990). Whilst this kind of unsystematic variation in the acoustic signal may also be perceptually salient, it is not clear how speaker-specific coarticulatory detail could be linguistically relevant, though it may serve other purposes, such as speaker recognition (cf. Su, Li, and Fu 1974 on identification of speakers by degree of nasal coarticulation). A variety of researchers (see review in Goldinger 1997) have shown that voice quality information is encoded in long-term memory, and furthermore that lexical and voice quality information are processed as integral dimensions of spoken words: neither dimension can be ignored in favour of the other. So, the difference between systematic and unsystematic acoustic variability may not always be straightforward, but the distinction should be maintained at least as a theoretical framework.

The extent to which even systematic variability is perceptually salient is also unclear. Some phoneticians are presently distancing themselves from traditional assumptions of the primacy of the phoneme and canonical forms. Instead there is a growing interest in the importance of small-scale allophonic variation in both production and perception. There is perhaps a temptation to assume that all such sub-phonemic detail is important. Thus L¨ofqvist (1985) claims that listeners are sensitive to all acoustic variations that a vocal tract can produce. This may not be so far from the truth, but data is needed to substantiate such claims. Klatt (1979), for instance, suggests that not all rule-governed segment duration changes are perceptually discriminable. The production studies in this thesis aim to document systematic acoustic variation associated with /r/ and /l/ and to establish factors which influence patterns of coarticulatory behaviour. Statistical analysis provides a first measure of the significance of effects, but it is primarily an indication of where perceptual testing might best begin. The perceptual study in Chapter 3 examines the extent to which specific subphonemic spectral details are perceptually significant, and
in particular assesses whether such detail can aid lexical access.

1.3 Speech synthesis

In early work on synthetic speech the necessity of simplifying the task at hand meant that only the most important acoustic features were reproduced. Small-scale, longer term context induced variation was overlooked, whilst attention was focused on improving synthetic speech in other ways. The basic premise was one of canonical phonemes which could be modified in certain relatively limited ways (cf. Klatt 1987) and substantial progress was made in this way, especially as more and more detail was incorporated into synthesis systems. The inclusion in synthesis systems of a number of context-sensitive allophones allows the modelling of coarticulatory detail which affects the target formant frequencies of a sound. But perhaps most successful is the modelling of transitional coarticulatory effects, by means of algorithms which smooth transitions between adjacent acoustic segments. For instance in the MITalk system (Allen, Hunnicutt, and Klatt 1987, pp116–7) the generation of control parameters is described as follows:

1. Draw the target value for the first segment
2. Draw the target value for the next segment
3. Smooth the boundary between the segments using one of four smoothing algorithms

So contextual variation at segment boundaries is relatively well modelled by means of interpolation algorithms, but target values for vowels are calculated from natural productions of a large set of CV syllables. That is to say, consonant-induced variation at the midpoint of most vowels is averaged out across tokens.

The most obvious fault with current rule-generated synthetic speech is its ‘robotic’ and rather ‘lifeless’ sound quality. Docherty and Shockey (1988) state that the problems of producing natural-sounding speech synthesis are not primarily due to engineering problems, but are due instead to the failure to adequately model systematic, detailed acoustic features of the speech signal. This claim is reinforced by experience with copy synthesis. During the 1960s and 70s John Holmes, amongst others, used copy synthesis to produce synthesized sentences which, by the 70s, were virtually indistinguishable from the naturally produced originals. Allen et al. (1987) recognize that this technique was successful “... in part because
It reproduces all of the potential cues present in the spectrum, even though we may not know which cues are most important.” They go on to say that, “the speech perception apparatus appears to be aware of any and all (perceptually discriminable) regularities present in the acoustic signal generated by the speech production apparatus, and these regularities should be included in synthetic stimuli if possible” (p109).

The richness of the natural speech signal seems to contribute to its coherence (cf. work on auditory streaming by Bregman 1978, 1990, Summerfield and Culling 1994) and lack of acoustic coherence in synthetic speech has been claimed to be a factor in its fragility in difficult listening conditions and in its unnatural sound quality (Hawkins and Slater 1994, Hawkins 1995). In the following sections I examine some other consequences of this lack of coherence for the quality of synthetic speech.

In the early development of synthetic speech, when quality was relatively poor, intelligibility tests did not have to be particularly sophisticated to highlight differences between synthetic and natural speech. There was an overwhelming focus on segmental or word intelligibility, often of nonsense sequences using semantically anomalous sentences, often with a closed response-format and usually in optimal laboratory listening conditions (cf. Fairbanks 1958, House, Williams, Hecker, and Kryter 1965, Nye and Gaitenby 1973). The quality of synthetic speech has now improved to the point where it can match the performance of natural speech in these kinds of tests (Pratt 1986) and researchers have perhaps been rather too ready to describe synthetic speech as being ‘perfectly intelligible’, stating that what remains to be improved is its naturalness (cf. Pols 1989). Experimental work is cited here which shows that synthetic speech lacking acoustic detail is far from matching natural speech in a whole range of tests: it is disproportionately harder to understand in difficult listening conditions and is harder to process than natural speech, to the detriment of other cognitive processes.

1.3.1 Processing problems in synthetic speech

A wide variety of tests demonstrate that, even where the segmental intelligibility of a synthesis system appears to match that of natural speech, it is to the detriment of other comprehension processes or has a knock-on effect on other cognitive tasks. Manous and Pisoni (1984, cited in Duffy and Pisoni 1992) use the gating paradigm to show that subjects need only the first 361ms of a word to identify it in natural speech, whereas
417ms are required for synthesised versions of the words. Clark, Dermody, and Palethorpe (1985) conducted an experiment in which subjects heard five repetitions of natural and synthesised CV syllables in background noise. They found that identification accuracy for natural speech increased over the repetitions, whereas no such improvements were found for synthetic speech. They claim that listeners were picking up on the extra, ‘redundant’ acoustic cues in natural speech, whereas these cues were unavailable in the synthesised versions.

An everyday example of the inferior quality of synthetic speech is demonstrated by Spiegel, Altom, and Macchi (1990). They assessed the intelligibility of natural and synthetic speech over the telephone, which imposes bandlimiting conditions and circuit noise. In an open-response intelligibility test over the phone using both real and non-words, natural speech was 88% intelligible, whereas the Orator speech synthesis system was just 72% intelligible. Similarly, synthetic speech is disproportionately fragile in background noise. Pratt (1986) found a drop in intelligibility of 16% for natural speech between clear and 0dB speech to noise ratios. The equivalent drop in intelligibility for the best synthesis system was 20% and the average drop in intelligibility for a range of synthesis systems was 34% (see Figure 1.1)

![Figure 1.1: Fall in intelligibility of natural speech and synthetic speech between clear and 0dB speech to noise ratios. (Data from Pratt 1986.)](image)

Other researchers explore the consequences for higher-level comprehension processes and secondary task reaction times when the source of information is a synthetic speech signal rather than natural speech. Pisoni, Greene, and Nusbaum (1985a and 1985b) show that reaction times on real- vs. non-word decisions (lexical decision tasks) are slower
for synthetic speech than for natural speech. This is taken as evidence that the phonological encoding of synthetic speech requires more cognitive effort. Duffy and Pisoni (1992) take up this idea again, beginning with the assumption that limited cognitive resources are available for carrying out the various processes involved in spoken language comprehension. They draw an analogy between speech perception and visual word-recognition and models of reading comprehension. Stanovich and Perfetti (cited in Duffy and Pisoni 1992) suggest that when lower-level word recognition processes are not highly automated, as is the case for poor readers, then their operation drains needed resources away from higher-level comprehension processes. Similar effects are claimed for synthetic speech by Duffy and Pisoni. In synthetic speech, they say, lower-level phoneme and word identification processes require more resources than for natural speech due to the impoverished nature of the synthetic stimulus. The result is a draining away of resources from higher-level comprehension processes. Thus, whilst we may succeed in redirecting sufficient cognitive resources to obtain similar scores in intelligibility tests for the lower levels of comprehension, this is to the detriment of higher-level comprehension processes.

What is claimed is that there is a kind of knock-on effect from difficulties at the lower levels of spoken language processing to higher levels. Concurrent load measures provide another indicator of such problems. The effects on memory of listening to synthetic speech are well documented. Luce, Feustel, and Pisoni (1983) show that straightforward recall and recall in order of presentation of lists of words is worse for synthetic speech than for natural speech, indicating a reduced capacity for transferring information from working memory into long-term memory.

Other studies suggest that natural speech can be comprehended at much higher speaking-rates than synthetic speech. Comprehension is fairly constant for natural speech at up to about 300 words per minute (Fairbanks, Guttman, and Miron 1957). Hersh and Tartaglia (1983, cited in Duffy and Pisoni 1992) find that synthetic speech comprehension remains constant at 150 and 180 wpm, but it drops off drastically in intelligibility well before 300 wpm. This is taken as an indication that synthetic speech takes up more processing time; something that might not be revealed in the normal course of an utterance, but which is obviously critical once the speech is delivered more rapidly. In similar work Ralston, Pisoni, Lively, Greene, and Mullennix (1991) allow subjects to control the rate of presentation of sentences in passages of varying difficulty in both natural and synthetic speech. They find significantly slower rates for synthetic speech and for more difficult passages.
Further indicators of the extra load which synthetic speech imposes on cognitive processing capacity come from experiments using the secondary task paradigm. In one kind of experiment in this category listeners are required to comprehend a passage presented in either natural or synthetic speech, whilst also monitoring for a particular target word. Ralston et al. (1991) show that responses are much slower for subjects listening to synthetic speech. In another experiment (Ralston, Lively, Pisoni, and Rivera 1990) subjects had to monitor for a non-speech sound; a click. The same results were obtained, but this time they cannot be attributed to differences in the ease of identifying the target stimulus. Instead Ralston et al. claim that listening to synthetic speech uses up, not only more of the linguistically-oriented cognitive resources, but also non-linguistic resources.

This effect on non-speech tasks has obvious implications for many text-to-speech applications. Multi-task situations are common; the user may be required to process auditory information while simultaneously performing another task involving hands or eyes, for instance to write down a telephone number or land an aircraft. Poor performance on any of these secondary tasks will detract from the usefulness of synthetic speech.

Sentence verification tasks also highlight interesting differences in speed of comprehension between natural and synthetic speech. When subjects are required to indicate whether a sentence is true or false (e.g. “Mud is dirty”) and then transcribe it, response times, response accuracy and transcription accuracy are all significantly higher for natural compared with synthetic speech (Manous, Dedina, Nusbaum, and Pisoni 1985).

Further experiments show that listeners to synthetic speech appear to devote more attention to ‘surface details’ of the acoustic signal than is the case for natural speech. In a comprehension study, Luce (1981) finds that synthetic speech performs less well than natural speech on measures that directly assess meaning. However, synthetic speech is better than natural speech on the measure that assesses memory for exact words used in the text. Duffy and Pisoni (1992) report anecdotal comments from subjects that the synthetic voice sounded as though it had a foreign accent. Thus for synthetic speech the processing system seems to devote a disproportionate amount of resources to lower-level acoustic processing, with the result that comprehension as a whole suffers in comparison with natural speech perception.

Duffy and Pisoni (1992) conclude that the end-product of the comprehension process for synthetic speech is more impoverished, fragmented and less robust than for natural speech. They say this will occur even when “synthetic words are perfectly identifiable”
and they attribute this to the fact that “more processing time is spent on word recognition, leaving less time for the integration and inferencing necessary for normal comprehension and retention of what was comprehended” (page 375).

1.3.2 Relating naturalness, intelligibility and comprehension

The interesting thing about all these tests is that they demonstrate the fallacy of so-called ‘perfect intelligibility’. They also give a new angle on the traditional dichotomy between naturalness and intelligibility. Researchers still tend to talk about these two aspects of quality as if they were separate things entirely. There are frequent comments in the literature saying that synthetic speech is _perfectly intelligible_ even though it _sounds unnatural_. Or even, as in the Duffy and Pisoni quotation above, that “words are perfectly identifiable” but “comprehension” is impaired. This kind of statement depends crucially on what one means by intelligibility. And for most researchers intelligibility seems to be equated with segmental intelligibility, often of very simple monosyllables. I suggest that, even if a subject can transcribe a synthetic sentence perfectly phoneme for phoneme, if it slows the subject’s response on secondary tasks, or affects their recall or comprehension, then that speech should not be described as perfectly intelligible.

Some researchers now explicitly differentiate between intelligibility and comprehension (cf. Sonntag, Portele, and Haas 1998). There are certainly grounds for such differentiation, but this should not result in the misleading conclusion that intelligibility and comprehension are unrelated. It is possible that, in turning attention to the ‘new’ problem of comprehensibility, researchers may assume that segmental intelligibility is fine. In fact I think it is unlikely that synthetic speech which is hard to comprehend would perform well in intelligibility tests. Once again the danger is that many of the standard tests of segmental intelligibility are simply not sensitive enough and are prone to ceiling effects. With more demanding perceptual tests, focussing on longer utterances than isolated monosyllables and imposing noisy listening conditions or a multitask environment, it seems likely that differences will still be found between the segmental intelligibility of even the best synthetic speech and that of natural speech.

What I have called the fallacy of perfect intelligibility may find its origin in various assumptions of traditional phonetic theory which are now being questioned. One source of the misleading conclusions about the intelligibility of synthetic speech lies in traditional
theories of speech perception (see Section 1.2). These have assumed that listeners discard all but the ‘distinctive’ acoustic properties necessary for perception of a particular sound. Given such a view of perception it is possible to conclude that the reduced array of acoustic cues available in synthetic speech might suffice to make the signal perfectly intelligible.

But the general consensus in current speech perception research is that the human perceptual system is sensitive to a wide variety of acoustic detail. Indeed, listeners seem to require such information if speech perception is to proceed smoothly. Recent models of speech perception allow for the simultaneous processing of a wide range of acoustic (and other) cues and stress the importance of what would previously have been regarded as redundant acoustic detail. Adopting this view of speech perception, it seems unlikely that the acoustically impoverished signal generated by text-to-speech systems could be as intelligible as the acoustically rich, robust signal that is produced by the human vocal tract.

Many researchers emphasise the importance of devising more sophisticated tests to assess the quality of synthetic speech (cf. Duffy and Pisoni 1992 and van Bezooijen and van Heuven 1997). Despite such progress there is still a tendency to separate segmental intelligibility from other measures of comprehension and from the assessment of naturalness. Thus Pisoni (1997a) argues that researchers should turn their attention away from attempts to improve segmental intelligibility and instead focus on improving the naturalness of synthetic speech. Similarly (Pols 1989, page 146) describes how “once the barrier of intelligibility is overcome” the next challenge for researchers is to improve naturalness. Whilst acknowledging that naturalness and intelligibility can be assessed independently of each other, the data to be presented here will show that they do not necessarily arise from different aspects of the speech signal. It is argued that the rigid separation of naturalness from intelligibility has sometimes obscured the best way to proceed in improving the quality of synthetic speech.

The survey of experiments in this section shows that synthetic speech fails to match natural speech in a wide variety of tests. This evidence is used to motivate a redefinition of intelligibility to include higher-level comprehension processes and other cognitive tasks. Whilst not equating intelligibility and naturalness, it is suggested that progress will be more rapid if attention is paid to both simultaneously. Furthermore, it is suggested that if we redefine intelligibility as proposed above, then the ‘barrier of intelligibility’ is a long way from being overcome. One factor contributing to the unnaturalness and fragility of synthetic speech is the inadequate modelling of systematic acoustic variation and it is argued that now
that the quality of the best text-to-speech systems is relatively good, it is appropriate to begin incorporating such detail. The production studies in this thesis set out to document some of this subtle but systematic acoustic detail that may improve the quality of synthetic speech.

1.4 Overview of thesis

I have described some of the consequences of lack of fine acoustic detail for speech synthesis and have highlighted the importance of the richness of the speech signal for successful speech perception. The next question was where best to begin documenting fine context-induced acoustic variation in the speech signal, in order to assess its potential contribution to speech perception and to the quality of synthetic speech.

An enormous body of literature exists both on the concept of coarticulation (cf. Daniloff and Hammarberg 1973, Hammarberg 1976, 1982, Kent and Minifie 1977 and Kühnert and Nolan 1997) and on empirical work describing the ways in which phonological segments vary in their realization under the influence of other segments (cf. MacNei1age and DeClerk 1969, Carney and Moll 1971 on articulatory variation, and Lindblom 1963, Öhman 1966 on acoustic variation). Whilst the notion of coarticulation is well-established, discussion has tended to focus on the influence of adjacent phones on each other, and particularly on the transitions between sounds. Where research has been done on longer domain effects it has almost exclusively been on either vowel-to-vowel coarticulation (cf. Öhman 1966) or on the spread of consonantal features to sounds which can be described as being unspecified for the feature concerned (cf. Benguerel and Cowan 1974 on labiality, Moll and Daniloff 1971 on nasality). Indeed Laver (1994) suggests a hierarchy of coarticulatory effects in terms of the typical time-span of influence, such that labial effects may spread over the greatest number of segments, followed by nasality and with lingual effects having the smallest temporal extent, operating chiefly within the syllable.

Other researchers claim that rhotic and lateral consonants can influence long stretches of the speech signal (cf. Kelly 1989). Such effects would seem to be primarily lingual, although rhotic consonants may also involve some lip-rounding. At any rate, little empirical work has been done in this area and these coarticulatory effects are less well understood than effects such as nasalisation and labialisation.

The experiments in this thesis focus on the influence of the liquids /r/ and /l/ on a
series of front vowels. The choice of vowels stems from what appears to be a contradiction in the coarticulation literature. Work by prosodic phonologists refers to /i/ as being auditorily very different in /r/ and /l/ contexts (cf. Kelly 1989). Other researchers, in contrast, present data which suggest that /i/ is a highly stable sound, which is relatively impervious to coarticulatory influence and which, in turn, may significantly affect the realization of surrounding sounds (cf. Recasens 1987). These issues are discussed further in Chapter 2.

The experiment in Chapter 2 documents coarticulatory effects within a single syllable, focussing on the influence of the liquids /r/ and /l/ on /i e æ/. For each vowel /h/ is used as a neutral context for comparison with the /r/ and /l/ contexts. The experiment explores differences in the susceptibility of vowels to rhotic and lateral influence. A preliminary investigation is also undertaken of the spread of consonantal resonance effects to non-adjacent segments.

The acoustic data from Chapter 2 form the basis of the perceptual study reported in Chapter 3. This experiment investigates the importance of small-scale coarticulatory detail spread over several segments to the perception of synthetic speech. As well as a straightforward test of the perceptual salience of the coarticulatory detail, this experiment investigates whether lexical or contextual cues affect the degree to which systematic acoustic variation contributes to intelligibility.

Having established the perceptual salience of fine acoustic detail in synthetic speech, the remaining chapters document other coarticulatory effects which are not routinely captured in the rules for text-to-speech systems. These experiments provide a basis for further perceptual testing and indicate some promising areas of research into improving the quality of rule-generated synthetic speech. Chapter 4 expands on the findings of Chapter 2 by exploring in greater detail coarticulatory effects spreading over several segments in the speech signal. The chapter focuses exclusively on rhotic resonance effects, and investigates anticipatory coarticulation in vowels in /VCVr/ sequences and perseverative effects in /rVCV/ sequences. Stress and vowel quality are varied in order to establish some of the factors which influence the spread of long-domain coarticulatory effects.

Chapter 5 examines the effects of /r/ and /l/ on vowels when the liquids occur as single syllable-onset constituents or as part of onset clusters. The temporal and spectral properties of vowels after a variety of clusters are examined, and some articulatory data are presented for the consonants in the onset clusters.

Chapter 6 examines poorly understood interactions between suprasegmental struc-
ture and coarticulatory behaviour. As in previous experiments, the influence of /r/ and /l/ on vowels in CV sequences is examined. There are two strands to the experimental work. The first is to explore the influence of foot-length on the duration and spectral properties of both stressed and unstressed syllables. English is described as being a stress-timed language, having approximately equal intervals between stressed syllables (Abercrombie 1964). This means that as you add unstressed syllables to a foot, compression of both stressed and unstressed syllables occurs. The temporal aspects of syllable compression have been described in detail by Ogden and Local and modelled in the Yorktalk synthesis system (1992, 1996). Chapter 6 explores some of the spectral consequences of these rhythmic effects.

The second part of the experiment in Chapter 6 assesses the impact of the position of a syllable in a foot on the coarticulatory behaviour of that syllable. There is evidence from work on vowel-devoicing (Rodgers 1998) that the three unstressed syllables in a four syllable foot are not identical, but that the middle one is ‘stronger’ and less prone to vowel-devoicing. Chapter 6 explores whether similar resistance to context-induced effects is found for rhotic and lateral coarticulation in vowels.
Chapter 2

Influence of liquids on following vowels

2.1 Introduction

The aim of all the production experiments in this thesis is to document poorly understood patterns of coarticulatory variation in English. Such context-induced effects are not routinely modelled in the rules for text-to-speech synthesis and it is suggested that the lack of such detail in synthetic speech may be a contributing factor in its lower intelligibility and unnatural sound quality. The experiment in this chapter explores what appears to be a contradiction in the literature, regarding the susceptibility of vowels to coarticulatory influence.

2.1.1 On the coarticulatory resistance of /i/

Work by prosodic phonologists emphasises that coarticulatory effects are not restricted to the transitions between sounds, but may spread throughout the syllable and beyond. Such long-term coarticulatory effects are referred to as resonances and a classic example given is the effect /l/ and /r/ have on the vowel /i/. In words like Terry vs. telly and Henry vs. Henley, the prosodic phonologists claim that the final /i/ sound is audibly different in many accents of English (Kelly 1989, Kelly and Local 1989).

In contrast to suggestions by the prosodic phonologists that /i/ is audibly different in different phonetic contexts, other researchers claim that /i/ is the most stable of all
vowels and is unlikely to vary much between different contexts. Quantal Theory, for example, proposes that variation in the precise constriction location for /i/ does not produce significant acoustic variation (Stevens 1989). A caveat to this is raised by Fant, who states that the preferred high point of the tongue for /i/ in most languages is actually 1–2cm further back than Quantal Theory would predict (Fant 1989). The constriction thus occurs at a point where F2 and F3 frequencies are rather more sensitive to variations in the precise articulatory configuration than they would be with a more fronted articulation. Fant suggests that the more backed articulation provides a firmer anchoring point for the tongue using kinaesthetic feedback. This concurs with Recasens’ (1987) suggestion that /i/, with its high degree of tongue-palate contact, should, in articulatory terms at least, be relatively stable. Of course stability in constriction location does not rule out changes in tongue-body configuration which could change the acoustic properties of the sound.

Quantal theory’s predictions are borne out by various empirical studies which suggest that /i/ is a very stable vowel both in acoustic and articulatory terms. In work on American English, Gay (1974, 1977) finds /i/ to be more resistant than /æ/ to differences in jaw opening and tongue body height caused by contrasting consonants and vowels. Magen (1984) finds /i/ to be more resistant than /æ/ to V-to-V coarticulatory effects in the frequency of F2 in Japanese, and Manuel and Krakow (1984) find the same for Swahili and Shona. Butcher and Weiher (1976) provide EPG data from nonsense sequences in German showing a coarticulatory hierarchy amongst vowels, such that /i/ exerts the greatest coarticulatory influence, and /a/ the least.

In an acoustic study on Catalan CV sequences Recasens (1985) shows that /i/ is the vowel with the highest degree of resistance to consonantal resonance effects. In the same study he finds that palatal consonants are very resistant to coarticulatory influence, and he concludes that articulations involving a large tongue-dorsum raising gesture towards the palate block coarticulation on tongue-body activity. This theme is taken up in Recasens’ (1987) discussion of articulatory constraints on coarticulation. Here he finds that the degree of vowel-to-vowel coarticulatory effects in VCV sequences is inversely related to the degree of tongue dorsum constraint during the production of the intervocalic consonant and the second vowel. That is to say, the higher the tongue body position for a particular sound the more likely it is to block the spread of lingual coarticulatory effects.

This finding is supported by EPG and acoustic data from one Catalan and two American English speakers (Recasens 1989). In this work Recasens finds much larger con-
sonant dependent effects of /ʃ/ and /t/ on /æ/ than on /i/. He concludes that /i/ is more resistant to coarticulation than /æ/ because it is produced with more palatal contact. The idea is that kinaesthetic feedback due to the high degree of contact between tongue and palate makes such sounds less susceptible to articulatory variability and also means that these sounds exert the greatest coarticulatory influence over other sounds. Farnetani (1990) finds similar results for Italian consonants, showing that coarticulation of tongue body varies inversely with the degree of tongue dorsum elevation. Finally, in work on American English, Huffman (1986) claims that constraints on tongue body movement in /d/ and /l/ are crucial in determining the degree of vowel-to-vowel coarticulation across these consonants.

Interestingly, work in the audio-visual domain reinforces these findings of articulatory and acoustic stability for /i/. In experiments involving the McGurk effect (McGurk and MacDonald 1976) a smaller range of visual articulations seem to be tolerated for /i/ than for the open vowel /a/. Green and Gerdeman (1995) find that auditory /i/ tokens dubbed onto visual /a/ articulations were considered by subjects to be less compatible than the reverse. Similarly, an incongruency between an auditory /i/ and a visual /a/ significantly slowed the identification of the initial consonant in a CV stimulus, whereas the reverse pairing did not. They suggest that /a/ can be produced with a rather wide variety of articulations, including degree of jaw-opening, whereas /i/ demands a relatively precise articulatory configuration.

2.1.2 Language- and accent-specific differences

The studies just described encompass a wide variety of languages and it is possible that this is the source of the discrepancy between the prosodic phonologists’ claims of variability in /i/ and other reports of /i/’s stability. Kelly’s telly vs. Terry data come from the North-West Midlands accent of English, whereas many of the studies showing /i/ to be stable are from languages with quite different realizations of the phoneme and with quite different phonological vowel systems.

However, there is some evidence from cross-linguistic work to suggest that we might expect less coarticulatory variability in English, rather than more. It was mentioned earlier that Manuel and Krakow find greater susceptibility to coarticulatory variation in /i/ than in /æ/ in the two Bantu languages Swahili and Shona. In the same study (1984) they compare vowel-to-vowel coarticulation in English, a language with a relatively crowded
vowel space (13–15 vowels, depending on dialect) with Shona and Swahili, which have relatively small and well-spaced vowel systems (both have the phonemic vowels /i e a o u/). The prediction is that languages with small and very well-spaced phonological inventories allow more coarticulation than languages with large and crowded inventories (cf. Manuel 1990). In accordance with their predictions, they find greater coarticulatory variability in the vowels of Shona and Swahili than in English. The Manuel and Krakow data come from American English, but if their theory is correct, and coarticulatory variability in vowels is dependent on relative crowding of the vowel space, then the same should hold for British English, since it has a very similar phonological inventory to American English.

Manuel and Krakow acknowledge that the relationship between the size and relative crowding of a language’s phonological inventory and the degree of coarticulatory variation allowed by that language is not straightforward. Farnetani (1990) points out that context-induced nasalisation is very restricted in standard Italian, although the language has only seven vowel phonemes and no nasal vowels. In the other direction, English, with its very crowded vowel inventory, is often described as permitting a great deal of variation in the realization of vowels, particularly in unstressed syllables. Delattre (1965) compares American English with French, German and Spanish and states that 90% of unstressed vowels in English are realized as some variety of schwa, whereas a far smaller proportion of centred vowels is found for the other languages. Furthermore, he suggests that “distortion of vowel colour” by consonant anticipation is far more pronounced in English than in the other languages. This comment is particularly interesting, given that Spanish has a very small and uncrowded vowel inventory (/i e a o u/) compared with English. Farnetani (1990) does suggest that most vowel variation in English is in the front-back dimension and English has fewer vowels distributed along this horizontal plane than vowels which are distinguished by height. But clearly the factors determining a language’s propensity to allow coarticulatory variability are highly complex.

As well as encompassing a wide variety of languages, the studies under discussion in Section 2.1.1 also differ in the particular sounds they investigate. Only the prosodic phonologists look at /i/ in the context of /r/ and /l/. The experiments showing /i/ to be a stable sound focus on vowel-to-vowel coarticulation or on the influence of stops and fricatives on vowels. A further difference is that the prosodic phonologists’ examples discussed here tend to involve unstressed vowels, whereas the other studies predominantly focus on stressed syllables. Using the Bladon and Al-Bamerni (1976) notion of coarticulatory resistance (CR),
it seems unlikely that a sound would have a single CR value across all stress conditions and phonetic contexts. It is quite possible that stressed /i/ generally varies little in its realization (i.e. has a high CR value), but that in the specific contexts of /r/ and /l/ or when unstressed, it can vary a lot (i.e. has a low CR value).

2.1.3 Resolving contradictions over variability of /i/

In his work on the West Midlands accent of English, Kelly (1989) presents EPG data showing that a velar plosive after /ri/ is produced with a more fronted articulation than the same consonant after /li/ (note that these resonances are the reverse of what is found for SSBE). He also claims that the intervening vowels are auditorily different between the two contexts, but provides no empirical evidence to back up these impressionistic claims. Providing such data is clearly necessary if such contextual information is to be incorporated in synthetic speech.

In previous work I investigated the acoustic characteristics of the vowels /i:/ and /e:/ in the context of /r/ and /l/ in SSBE (Tunley 1995). That experiment showed that F2 and F3 frequencies in /i:/ varied more between /r/ and /l/ contexts than did F2 and F3 in /e:/ This seems to contradict the predictions of Quantal Theory and the articulatory and acoustic data of Recasens and others and it lends support to the prosodic phonologists.

In order to explain the apparent discrepancy between this finding and Recasens’ data, I suggested that there is something specific to the type of coarticulatory influence exerted by rhotic consonants that affects /i/ more than other vowels and thus goes against the general trend of stability for this vowel in other contexts. One suggestion is that it is possible to articulate an /i/ whilst keeping the tongue in a position not far removed from that for the retroflex or rhotic /r/. Such an articulation is perhaps less likely, for the more open vowel /e/, since, in order to articulate /e/, the tongue has to come a long way out of the configuration for /r/. Alternatively there may not be a straightforward physiological explanation for the pattern. The detailed patterns of coarticulation are largely language- and dialect-specific, and so cannot entirely be explained in terms of production strategies. Extreme rhotic colouring of /i/ may simply be a convention adopted at least by SSBE speakers.

Articulatory data may shed light on the precise patterns of variation found. But the key interest here is to document fine acoustic detail and to assess its potential contri-
bution to the quality of synthetic speech. The focus in my earlier work was primarily on /r/, as predictions about the acoustic influence of this sound are much more straightforward than for /l/. Gimson (1970) describes RP English /r/ as being generally realised as a voiced frictionless continuant, and this seems to be approximately equivalent to a contemporary SSBE realization. Most importantly for present purposes the sound is characterised by having low F3 and F4 frequencies (Fant 1973). The consonant has a predictable effect on vowels, in that it lowers the frequency of F2, F3 and possibly F4. On the other hand, the realization of /l/, and especially the frequency of F2, is heavily dependent on surrounding vowels (Bladon and Al-Bamerni 1976). Given this contextual variation it is difficult to predict how /l/ will affect the realization of surrounding vowels.

This chapter describes an experiment which expands on the findings of Tunley (1995) and which examines more closely some of the unresolved issues of that work. Specifically the inclusion of /h/ as a neutral context for comparison with the /r/ and /l/ contexts facilitates the discussion of the coarticulatory influence of these sounds.

2.2 Research Questions

Following the findings of Tunley (1995) it is predicted that the rhotic approximant /r/ will exert the greatest coarticulatory influence on high vowels and the least influence on low vowels. This is measured in terms of the shift in F2 and F3 frequency in vowels in the context of /r/ relative to their frequency in the context of /h/, a lingually neutral articulation. /l/ is included here since it was used as a comparison for the /r/ context vowels in the 1995 study. In that experiment it was not clear precisely what coarticulatory effects were exerted by /l/ on vowels, and it is hoped that this will be easier to assess in the three-way consonant context design proposed here.

Anticipatory V-to-C effects in the consonants are also explored here and a preliminary investigation is undertaken into the perseverative spread of consonant to schwa effects across intervening segments in /CVCa/ sequences.

2.3 Materials

A hierarchy of front vowels ranging from high to low was investigated in the contexts of the consonants /h/, /r/ and /l/ (see Figure 2.1). /h/ provides a context free of any
supralaryngeal articulation and thus a relatively neutral standard of comparison against which the coarticulatory effects of /r/ and /l/ on the vowels can be assessed.

Figure 2.1: Schematized outline of experimental design: showing sequence of interest and indicating with arrows the coarticulatory effects to be examined.

The primary interest in this experiment is the mutual coarticulatory influence of consonants and vowels in CV sequences. However, a preliminary analysis of longer domain coarticulatory effects is also undertaken. Tunley (1995) showed that consonantal resonance effects may spread to non-adjacent syllables. Differences were found in the acoustic characteristics of /i/ in the phrases *miller be* /milɔ bi/ *vs.* *mirror be* /mirɔ bi/. The frequencies of both F2 and F3 were lower in /i/ in the non-immediate context of /r/ by 76 and 71Hz respectively. This experiment explores the acoustic properties of schwa in /C₁ V C₂ ø/ sequences where C₁ is /h/, /r/ or /l/ and the intervening vowel is /i ɪ æ/. Table 2.1 contains the sentences in which the sequences of interest were incorporated, subdivided into sets for each main vowel of interest. Sentences were designed to be natural-sounding whilst maintaining a controlled phonetic context around the sequence of interest. It was felt that real words should be used, both to make the task for readers easier and more natural, and in order to emphasise the general relevance of the findings.

The consonant immediately following the main vowel of interest is /p/ in three of the vowel sets and /f/ in one. These consonants are chosen because they do not involve tongue articulations and thus provide a relatively neutral context for investigating lingual coarticulatory effects. In each case the syllable containing the target vowel is surrounded by the neutral vowel schwa.

The remaining phonetic context has been kept as similar as possible, at least between the sentences for each vowel. Sentences were kept at a fairly constant length; most are around 10–12 syllables. In each case the main CV sequence of interest is stressed and occurs near the beginning of the sentence, with nuclear stress being on a word towards the
CHAPTER 2. INFLUENCE OF LIQUIDS ON FOLLOWING VOWELS

Sentences	Sequence of interest & immediate context
The heap of oysters was enormous. | /ðo hɪp ɒv ˈost/
The reaper voiced his displeasure. | /ðo riːpə ˈvɒst/
Another **heap** avoids the puddle. | /ðə lɪp əˈvɔːdz/
His other **hip** appeared to be fractured too. | /ðə hɪp əˈprækt/
Jack the **Ripper** posed a threat to society. | /dʒæk ðe ˈrɪpə ˈpɒzd/
His upper **lip** appeared somewhat swollen. | /ðz ˈlɪp əˈprækt/
The **heifer** nibbles lazily at some grass. | /ðə ˈhɛfər ˈnɪb/
He gave the **ref** an issue of *Footballer’s Weekly*. | /ði ˈrɛf ən ˈɪʃ/
Telephoneists think quickly on the whole. | /tə lɛfənɪst/
Mr. **Happer** misses his wife enormously. | /mə hæpər ˈmɪz/
When a **rapper** misses the beat you notice it. | /nə ræpər ˈmɪz/
Never lap a **Mississippi** runner or they get annoyed. | /nəv læp ə ˈmɪsəpɪski ˈrənər ɔr ðə ˈɡet ənəʊnd/

Table 2.1: Experimental sentences: the sequence of interest is underlined in the orthographic transcription.

end of the sentence.

As well as the experimental sentences, 18 fillers were designed to distract subjects from the purpose of the experiment. These are given in Table 2.2.

2.4 Recording

The 12 sentences in Table 2.1, along with 18 fillers (see Table 2.2) were randomized in 10 blocks to obtain 10 repetitions of each target syllable. Five native speakers of Southern British English, 2 female, 3 male, aged between 20–30 years read the sentences. They were instructed to speak in a natural manner, as though talking to a close friend, rather than in a careful reading style.

The speakers were given a practice session using a randomly chosen sheet of sentences, before reading the list proper (consisting of 10 sheets of 30 sentences) in two sessions separated by a 3–5 minute break. The recording was made onto DAT tape in a sound treated room using a Sennheiser MKH 40 P48 microphone. The speech was digitised at 16kHz using Silicon Graphics Indigo A.D. converters.
CHAPTER 2. INFLUENCE OF LIQUIDS ON FOLLOWING VOWELS

2.5 Measurements and statistical analysis

2.5.1 Measuring formant frequencies in vowels

The 2nd and 3rd formant frequencies of each vowel were measured using the *xwaves* automatic formant tracking facility, 20-pole Burg lpc spectra with a 30ms rectangular window. These measurements were supplemented by identical spectra taken by hand where obvious errors had been made by the formant tracker. Tunley (1995) finds no differences in the frequency of F1 between /r/ and /l/ contexts, and so this formant frequency is not examined in the experiment reported here. Rosner and Pickering (1994) provide support for this decision, stating that the frequency of F2 is generally more susceptible to coarticulatory changes, particularly to shifts in constriction location, than is the frequency of F1. The frequency of F3 is also measured since significant context-induced shifts for this formant were found in the earlier study. Furthermore /r/ is characterized by having very low F3 frequency, so it is predicted that this will have an effect on surrounding vowels.

The measurements were made at the midpoint of the critical vowel – this point being calculated automatically once the endpoints of the vowel had been marked by hand. Finding the midpoint of vowels after /h/ and /l/ was relatively straightforward. Vowel onset could be defined consistently as a sudden change in the waveform – either in terms of amplitude, or waveshape, or both – and vowel offset coincided with a silence for the following stop, or frication for a following fricative. Such segmentation decisions were also
guided by looking at the spectrogram.

Finding the mid-point of vowels in /rV/ syllables, however, posed considerable problems, since definition of vowel onset is difficult after this consonant. For /rV/ syllables there are only gradual changes in the waveform between consonant and vowel and so it was decided to concentrate on the spectrogram. Vowel onset was defined as the rather abrupt increase in amplitude, or ‘onset’, of F3 and F4 which occurs as the tongue moves out of the configuration for /r/. An example is given in Figure 2.2, where vowel onset would be defined as being at about 0.13s. For some speakers, F3 and F4 were regularly apparent throughout the rhotic phase of articulation and in these cases the onset of F5 had to be taken as the indicator of vowel onset.

An obvious problem with this technique for defining vowel onset is that a darker spectrogram may give the impression of an earlier onset than a lighter spectrogram. In order to establish whether the hue of the spectrogram affected the consistency of measurements, a reliability test was conducted. 10 sentences were chosen at random, including 2–3 instances of each vowel and 2 utterances from each speaker. Using spectrograms of ‘normal’ darkness the midpoint of the target vowel was calculated in each case, and the frequencies of F2 and F3 were measured at this point. One week later these measurements were repeated using spectrograms adjusted to be very dark. Using the different spectrograms resulted in an average difference in location of vowel midpoint of just 3ms. Differences in the frequency
of F2 and F3 using the different spectrograms were 17Hz and 8Hz respectively. So, whilst acknowledging the essentially arbitrary nature of any such segmentation process, the method outlined above seems to satisfy the need for consistency across repetitions and between speakers.

2.5.2 Measuring formant frequencies in consonants

F2 and F3 frequencies were measured mid-consonant, using the same formant tracking facility as for the vowels. Since /h/ is a voiceless consonant consisting of breathy noise over a range of frequencies a rather different technique to LPC analysis was employed to determine resonant frequencies. Shadle (1985) points out that, since sounds generated by turbulence are essentially random in nature, they are best characterised by statistical properties such as the mean and standard deviation averaged over time. She finds that the best estimate of this is found by averaging several finite-duration spectra together. A certain number of individual DFT spectra are made at particular points over a selected section of the speech signal and these are then combined to form the ‘root mean square averaged spectrum’, or ‘long term average’ spectrum.

Finding the midpoint of /r/ in order to make the measurements at comparable points across tokens posed similar problems to defining the vowel midpoint in /rV/ syllables. Pilot work suggested that the most consistent way of determining where to measure formant frequencies in /r/ was to judge by hand a place roughly half way through the relatively steady state portion of the consonant, before the transitions into the vowel begin. This tended to coincide with a region of low amplitude in the waveform and also with relatively steady and low F2 and F3 frequencies.

2.5.3 Measuring formant frequencies in schwa

The frequency of F2 and F3 were measured in the ‘non-adjacent’ schwa (see Figure 2.1), using an identical method to that described for the main vowel of interest in section 2.5.1. Definition of vowel onset and offset was straightforward for the schwas, as they were flanked by stops, fricative or nasals, all of which are associated with abrupt changes in the waveform or spectrogram.
Statistical Analysis

The data for the vowels and consonants was analysed separately and a repeated measures ANOVA was run for each formant frequency. In each case a 3×4 design was used, with factors: *Consonant*: /h/, /l/, /r/ and *Vowel*: /i/, /i/, /ɛ/, /æ/.

2.6 Results and Discussion

2.6.1 Consonant to vowel coarticulation in CV sequences

Figure 2.3 shows the frequency of F2 and F3 averaged across vowels for each of the three consonant contexts: /h/, /l/ and /r/. Vowels in /rV/ syllables have lower F2 and F3 frequency than those in either /lV/ or /hV/ syllables. The vowels in /lV/ syllables differ primarily from those in /hV/ syllables in that they have lower F2 frequency. As predicted, there is a significant effect of consonant for both F2 and F3 (F(2,8)=30.78, $p < 0.0002$, F(2,8)=55.93, $p < 0.0001$ respectively). Table 2.3 shows planned comparisons for the effect of consonant, confirming that both F2 and F3 are significantly lower in vowels after /r/ than /h/, and that /l/ only has a significant effect on F2 frequency.

![Figure 2.3: F2 and F3 frequencies averaged across all vowels in /h/, /l/ and /r/ contexts.](image)

As well as a significant main effect of consonant, there is a consonant \times vowel interaction for both F2 and F3 frequencies (F(6,24)=7.76, $p < 0.0001$, F(6,24)=6.05, $p < 0.0006$ respectively). I will look in turn at the /rV/ and /lV/ syllables, comparing the vowels in
Table 2.3: Planned comparisons for factor consonant. The difference between formant frequencies is calculated as

\[
\text{Formant frequency in } /hV/ - \text{Formant frequency in } /rV/.
\]

<table>
<thead>
<tr>
<th>Consonant Context</th>
<th>ΔHz</th>
<th>F(2,8)</th>
<th>p</th>
<th>ΔHz</th>
<th>F(2,8)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>/hV/ − /rV/</td>
<td>+196</td>
<td>59.99</td>
<td>0.0001</td>
<td>+256</td>
<td>75.02</td>
<td>0.0001</td>
</tr>
<tr>
<td>/hV/ − /lV/</td>
<td>+70</td>
<td>7.76</td>
<td>0.03</td>
<td>−27</td>
<td>0.86</td>
<td>0.4</td>
</tr>
</tbody>
</table>

these consonant contexts with those in the context of /h/.

Degree of r-colouring in different vowels

Figure 2.4 shows F2 and F3 frequencies in each of the four vowels /iɪɛæ/ in the context of /h/ and /r/. Both F2 and F3 are lower in r-contexts than in h-contexts for each of the four vowels studied here, although the extent to which they are lower varies substantially from vowel to vowel. This r-induced formant frequency lowering for F2 and F3 is significant to at least p < 0.05 in every case except for F2 in /æ/. Full details of the statistical analysis are given in Table 2.4. The pattern of results for F2 and F3 is strikingly similar: greatest r-induced formant-frequency lowering is found in /ɪ/, with rather less marked, but still significant formant-frequency lowering for /i/ and /ɛ/ and least in /æ/.

Figure 2.4: F2 and F3 frequencies in vowels in /hV/ and /rV/ sequences.
TABLE 2.4: Planned comparisons for F2 and F3 frequencies for all vowels in /h/ and /r/ contexts. The difference between formant frequencies is calculated as /hV/ − /rV/.

<table>
<thead>
<tr>
<th></th>
<th>F2 in vowel</th>
<th></th>
<th>F3 in vowel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔHz</td>
<td>F(6,24)</td>
<td>p</td>
</tr>
<tr>
<td>/hi/ − /ri/</td>
<td>+174</td>
<td>17.94</td>
<td>0.0003</td>
</tr>
<tr>
<td>/hu/ − /ru/</td>
<td>+390</td>
<td>90.18</td>
<td>0.0001</td>
</tr>
<tr>
<td>/he/ − /re/</td>
<td>+200</td>
<td>23.69</td>
<td>0.0001</td>
</tr>
<tr>
<td>/hæ/ − /ræ/</td>
<td>+19</td>
<td>0.20</td>
<td>0.65</td>
</tr>
</tbody>
</table>

The results do partially confirm the original hypothesis that it is high vowels that are most affected by rhotic resonance effects and low vowels that are least affected. But clearly vowel height is not a perfect predictor of susceptibility to rhotic influence. An important factor in the pattern of variation found here seems to be vowel length. The two vowels /i/ and /ɪ/, which are relatively similar in quality, differ dramatically in their susceptibility to r-colouring. The short vowel /i/ has considerably greater formant frequency lowering under the influence of /r/ than the longer vowel /ɪ/ and it is suggested that much of what is happening here can be explained in terms of ‘undershoot’ (cf. Lindblom 1990, Moon and Lindblom 1994). In /ɪ/ there is simply less time for the tongue to reach the target configuration for the vowel as it moves from that for the rhotic consonant.

Given that /ɪ/ also behaves differently to the other two short vowels /ɛ/ and /æ/, it was suggested that they might not actually be identical in length and that this could explain the pattern of coarticulatory variation. Measurements of vowel duration were made for one vowel from each speaker, making a total of 5 tokens for each of the three short vowels. In this small sample what was remarkable was the overall consistency in vowel length; /i/, /ɛ/ and /æ/ had average durations of 77, 74 and 76ms respectively. Vowel duration is thus ruled out as a potential explanation for /ɪ/’s greater susceptibility to rhotic influence than /ɛ/ or /æ/.

Whatever the reasons underlying the pattern of coarticulatory variation, what is of greater interest for the purposes of this thesis are the potential implications of such context-induced variation for speech perception and, therefore, for speech synthesis. This is taken up in more detail in Chapter 3. At present it is sufficient to note that it seems r-colouring cannot be introduced to a synthesis system as a single algorithm to be applied
without discrimination to all vowels. Instead /ɪ/ requires greater lowering of both F2 and F3 frequencies than the other vowels investigated.

Degree of l-colouring in different vowels

Figure 2.5 shows F2 and F3 frequencies for each of the four vowels /i ɪ ɛ æ/ in the context of /l/ and /h/. The differences in formant frequency for vowels in these two consonant contexts are less extreme than for vowels in the context of /h/ and /ɹ/ (cf. Figure 2.4). Generally the F2 frequencies for vowels following /l/ are slightly lower than those for /h/, significantly so for the vowels /ɪ/ and /ɜ/. The differences between F3 frequencies in the /h/ and /l/ contexts are small, inconsistent and are not statistically significant. Full details of the statistical analysis are given in Table 2.5.

![Figure 2.5: F2 and F3 frequencies in vowels in /hV/ and /lV/ sequences.](image)

2.6.2 Anticipatory vowel coarticulation in consonants in CV sequences

Figure 2.6 shows F2 and F3 frequencies measured in /h/, /l/ and /ɹ/ in each vowel context. As expected, there is a significant main effect of vowel context on the acoustic realization of consonants for both F2 and F3 (F(3,12)=16.81, p < 0.0001, F(3,12)=8.58, p < 0.003 respectively). However, there is also a consonant×vowel interaction for both formant frequencies in the consonants (F(6,24)=8.95, p < 0.0001 and F(6,24)=3.66, p < 0.01). And clearly the vowels affect each consonant differently.
Table 2.5: Planned comparisons for F2 and F3 frequencies for all vowels in /h/ and /l/ contexts. The difference between formant frequencies is calculated as /hV/ – /lV/.

<table>
<thead>
<tr>
<th>Vowel context</th>
<th>F2 ΔHz</th>
<th>F(6,24)</th>
<th>p</th>
<th>F3 ΔHz</th>
<th>F(6,24)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>/hi/ – /li/</td>
<td>+50</td>
<td>1.48</td>
<td>0.24</td>
<td>+28</td>
<td>0.33</td>
<td>0.57</td>
</tr>
<tr>
<td>/hu/ – /hu/</td>
<td>+110</td>
<td>7.12</td>
<td>0.01</td>
<td>−86</td>
<td>3.2</td>
<td>0.086</td>
</tr>
<tr>
<td>/he/ – /le/</td>
<td>+128</td>
<td>9.64</td>
<td>0.005</td>
<td>0</td>
<td>0.0004</td>
<td>0.99</td>
</tr>
<tr>
<td>/hæ/ – /læ/</td>
<td>−5</td>
<td>0.02</td>
<td>0.89</td>
<td>−50</td>
<td>1.07</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Figure 2.6: F2 and F3 frequencies in /h/, /l/ and /r/ followed by the vowels /i i e æ/.
Predictably, /h/ is acoustically far more variable than either of the other two consonants. This variation in absolute terms is confirmed by closer statistical analysis of the consonant×vowel interaction as shown in Table 2.6. Planned comparisons make clear that, while most of the /h/ allophones are significantly different from each other, none of the /r/ or /l/ allophones compared here are.

<table>
<thead>
<tr>
<th></th>
<th>F2 in consonant</th>
<th></th>
<th>F3 in consonant</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔHz</td>
<td>F(6,24)</td>
<td>p</td>
<td>ΔHz</td>
</tr>
<tr>
<td>/hi/ − /hI/</td>
<td>+237</td>
<td>17.74</td>
<td>0.0003</td>
<td>+64</td>
</tr>
<tr>
<td>/hu/ − /hæ/</td>
<td>+134</td>
<td>5.68</td>
<td>0.03</td>
<td>+187</td>
</tr>
<tr>
<td>/he/ − /hæ/</td>
<td>+229</td>
<td>16.62</td>
<td>0.004</td>
<td>+65</td>
</tr>
<tr>
<td>/li/ − /lI/</td>
<td>−19</td>
<td>0.12</td>
<td>0.74</td>
<td>−56</td>
</tr>
<tr>
<td>/lu/ − /læ/</td>
<td>+84</td>
<td>2.25</td>
<td>0.15</td>
<td>+8</td>
</tr>
<tr>
<td>/le/ − /læ/</td>
<td>+92</td>
<td>2.63</td>
<td>0.12</td>
<td>−21</td>
</tr>
<tr>
<td>/ri/ − /rI/</td>
<td>−36</td>
<td>0.42</td>
<td>0.52</td>
<td>+29</td>
</tr>
<tr>
<td>/re/ − /ræ/</td>
<td>+26</td>
<td>0.22</td>
<td>0.64</td>
<td>+32</td>
</tr>
<tr>
<td>/re/ − /ræ/</td>
<td>+88</td>
<td>2.42</td>
<td>0.13</td>
<td>+84</td>
</tr>
</tbody>
</table>

Table 2.6: Planned comparisons for F2 and F3 frequencies in /h, l/ and /r/ in each vowel context. The difference between formant frequencies is calculated as /hi/ − /hI/ etc. as indicated in column one.

Figure 2.6 confirms that both F2 and F3 frequencies in /h/ vary exactly as might be predicted from the following vowel quality; the highest formant frequencies for /h/ occur before /i/ and the values fall successively through /I/ and /æ/ contexts to their lowest values where /h/ precedes /æ/. This supports the original decision to use /h/ as a quasi-neutral standard of comparison, or ‘non-influencing’ phonetic context. Both /r/ and /l/ are relatively stable across vowel contexts which would suggest that these consonants are likely to exert a far stronger coarticulatory influence on surrounding vowels than /h/ (cf. Lehiste 1964 on stability of onset /r/ in American English).

Having noted the relative stability of /l/ and /r/ compared to /h/, it is important to note that the way in which they do vary between vowel contexts is not random. For /r/ in particular, there is a fairly regular pattern for both F2 and F3 frequencies to be highest in the context of either /i/ or /I/ and lowest before /æ/. Thus both formants do seem to be being ‘pulled’ slightly towards the values for the following vowel.
Similarly for F2 in /l/, there is a fairly uniform drop in frequency from the high to the low vowel contexts. This formant frequency shows a greater susceptibility to coarticulatory influence than the same formant in /r/. This accords with Bladon and Al-Bamerni’s (1976) finding that F2 in clear /l/ admits of a large degree of coarticulation. F3 in /l/ has the reverse pattern to F2, being highest before the low vowel /æ/ and lowest before the high vowel /I/, but all the differences are small. A comparison of F3 frequency in /l/ and frequency of the same formant in the following vowel shows that F3 in the consonant is very close in frequency to F3 in each of the vowels. So again, the vowels seem to exert a small but predictable influence on the preceding lateral. Similar findings for both /l/ and /r/ are reported in Nolan (1983, pp 88–91).

2.6.3 Spread of consonant-induced coarticulation to non-adjacent schwa

As well as investigating the influence of /r/ and /l/ on vowels which are directly adjacent to the consonant, formant frequency measurements were made in the schwa of the following syllable. In terms of C-to-V effects, I have described that /r/ exerts a far stronger influence on vowels than /l/ when /h/ is used as a comparison context. So this section on longer domain effects focuses on rhotic resonances and their spread to non-adjacent segments. Sequences examined were of the kind described in Figure 2.1 (page 20).

Table 2.7 gives the difference in F2 and F3 frequencies in schwa between the non-adjacent contexts of /h/ and /r/ and gives the results of the planned comparisons in each case. Although there is a tendency for formant frequencies to be higher in /h/ contexts, these differences are small and they are not statistically significant for either F2 or F3.

<table>
<thead>
<tr>
<th></th>
<th>F2 in schwa</th>
<th></th>
<th>F3 in schwa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∆Hz F(2,8)</td>
<td>p</td>
<td>∆Hz F(2,8)</td>
</tr>
<tr>
<td>/hVCa/ − /rVCa/</td>
<td>+11 0.11</td>
<td>0.75</td>
<td>+5 0.11</td>
</tr>
</tbody>
</table>

Table 2.7: Planned comparisons for F2 and F3 frequencies in schwa in non-adjacent /h/ and /r/ contexts. The difference between formant frequencies is calculated as: h-context − r-context.

Although there is no overall significant difference for schwas between the /h/ and /r/ contexts, there is a significant interaction of consonant×vowel for F2 frequency. Figure 2.7 shows the frequency of F2 in schwa split by preceding vowel-context and consonant
context. Planned comparisons reveal that the only significant difference in F2 frequency in schwa between non-adjacent /h/ and /r/ contexts occurs when the preceding vowel context is /i/ (see Table 2.8). This is consistent with the finding for CV sequences, that /i/ is the vowel most susceptible to r-induced formant frequency lowering. As such, this vowel is most likely to permit the spread of r-colouring to neighbouring syllables. This pattern might also be described as vowel-to-vowel coarticulation: /i/ in the context of /r/ has lower F2 frequency, and this characteristic is passed on to the schwa of the following syllable.

![Figure 2.7: F2 frequency in schwa in preceding vowel contexts /i e æ/ and consonant contexts /h/ and /r/](image)

<table>
<thead>
<tr>
<th>F2 in schwa</th>
<th>ΔHz</th>
<th>F(6,24)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>/hiCa/ − /riCa/</td>
<td>−44</td>
<td>1.18</td>
<td>0.29</td>
</tr>
<tr>
<td>/huCa/ − /ruCa/</td>
<td>+135</td>
<td>11.2</td>
<td>0.003</td>
</tr>
<tr>
<td>/hrCa/ − /rrCa/</td>
<td>−40</td>
<td>0.99</td>
<td>0.33</td>
</tr>
<tr>
<td>/haeCa/ − /raeCa/</td>
<td>−10</td>
<td>0.07</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 2.8: Planned comparisons for F2 frequency in schwa in non-adjacent preceding /h/ and /r/ contexts. The difference between formant frequencies is calculated as: h-context − r-context.
Inter-speaker variability

This experiment showed little overall evidence for consonantal resonance effects spreading to a non-adjacent segment, however, there was substantial inter-speaker variability. Table 2.9 shows that four of the five speakers have r-induced formant frequency lowering in the non-adjacent schwa for at least one of F2 or F3. Speaker JB stands out as having much higher F2 frequency in the r-contexts. This speaker had an extremely slow and careful speech style, often with pauses between words which it was felt had perhaps influenced the results for the schwa, since this was often separated from the ‘influencing’ consonant by a word boundary. This and impressionistic observations from the other speakers suggested that r-colouring may spread to non-adjacent segments in certain conditions. In Chapter 4 this is investigated further in rather more controlled phonetic sequences and including the spread of coarticulatory effects in the anticipatory direction.

<table>
<thead>
<tr>
<th>Speaker</th>
<th>F2 (Hz)</th>
<th>F3 (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/h/</td>
<td>/r/</td>
</tr>
<tr>
<td>JB</td>
<td>1331</td>
<td>1439</td>
</tr>
<tr>
<td>JH</td>
<td>1677</td>
<td>1696</td>
</tr>
<tr>
<td>JR</td>
<td>1458</td>
<td>1381</td>
</tr>
<tr>
<td>KP</td>
<td>1631</td>
<td>1599</td>
</tr>
<tr>
<td>RJ</td>
<td>1476</td>
<td>1407</td>
</tr>
</tbody>
</table>

Table 2.9: F2 and F3 frequencies in schwa in non-adjacent /h/ and /r/ contexts for individual speakers. The difference is calculated as h-context – r-context.

2.7 Summary and conclusions

This chapter explored the perseverative coarticulatory influence of /r/ and /l/ on adjacent and non-adjacent vowels. This production study provides the basis for perceptual work assessing the salience of this kind of coarticulatory detail when it is incorporated in synthetic speech generated by rule. The following section summarizes the chapter’s main findings, highlighting the kind of coarticulatory effects which are presently missing from most formant-based synthetic speech and which, if included in the rules for such systems,
have the potential to improve the naturalness and intelligibility of the synthetic speech produced.

![Figure 2.8: Schematized spectrograms showing F2 and F3 frequencies in /hV/, /lV/ and /rV/ sequences. Formant frequencies for the consonants and vowels are calculated by averaging over all tokens. Interpolation between target frequencies is not accurately modelled here.](image)

Figure 2.8 shows schematized spectrograms for F2 and F3 in /hV/, /lV/ and /rV/ sequences, where formant frequencies have been calculated by averaging across all tokens. It was found that /l/ exerted little influence over the acoustic realization of following vowels, even when these are directly adjacent to the consonant. Rhotic resonance effects, on the other hand, were found to spread throughout the syllable as seen by the lower frequency of F2 and F3 in these vowels when compared with those in /h/ or /l/ contexts.

Although Figure 2.8 gives a very clear picture of the most important findings, such a generalized diagram will obviously miss some of the detail. For instance, it misses the high degree of context-induced variation in the realization of /h/. However, this kind of variability is taken into account in the rules for most text-to-speech synthesisers, where formant frequencies for /h/ are calculated with reference to surrounding vowels.

More importantly for our purposes, Figure 2.8 fails to capture the fact that different vowels are not equally susceptible to the influence of r-colouring. Section 2.6.1, described how /i/ has the greatest formant frequency lowering in the context of /r/, whilst /æ/ has the least when these vowels are compared to their counterparts in /hV/ syllables. Figure 2.9 shows schematic spectrograms for the individual /rV/ syllables. This kind of
detail is certainly not captured in the rules for most text-to-speech synthesis, and it may be

crucial to achieving acoustic coherence. The different behaviour of the vowels means that

a single r-colouring algorithm for speech synthesis is unlikely to be successful. Overdoing

formant-frequency lowering for vowels such as /ɛ/ may result in an undesired vowel quality,

or the impression of a different voice quality. Similarly, insufficient r-colouring in /ɪ/ may

result in a vowel that sounds hyperarticulated. It seems likely that coarticulation in these

syllables must be modelled individually. These issues are explored in more detail in the

following chapter.

Figure 2.9: Schematized spectrograms showing F2 and F3 frequencies in /ɾi, rɪ, ræ/ sequences. Formant frequencies

for the consonants and vowels are calculated by averaging over all tokens. Interpolation between target

frequencies is not accurately modelled.
Chapter 3

Contribution of liquid coarticulation to the intelligibility of synthetic speech

3.1 Introduction to Perceptual Testing

The motivation behind the production work described in Chapter 2 was a desire to improve the naturalness and intelligibility of rule-generated formant synthesis. Many of the contextually determined acoustic differences described in Chapter 2 were statistically significant, but this should primarily be taken as an indicator of where one might most profitably begin perceptual testing. The next stage is to demonstrate that listeners are sensitive to this acoustic detail and that it facilitates lexical access when it is incorporated in rule-generated synthetic speech.

In this experiment context-induced acoustic variation was incorporated by hand in synthetic speech generated by rule on the Infovox Text-to-Speech system. This new acoustically rich synthetic speech was compared in perceptual tests with the old rule-based version, which lacks the coarticulatory variation. The perceptual tests involved subjects listening to the synthetic speech in background noise. Subjects were asked to fill in the blank in each of a series of sentences, where the word omitted was that containing the syllable of interest.

When coarticulatory variation based on data from the production study in Chap-
CHAPTER 3. INTELLIGIBILITY OF SYNTHETIC SPEECH

ter 2 was incorporated in a selection of words in Infovox-generated sentences the speech style of the manipulated words did not match the speech style of the remainder of the sentence. It was thought that the speech elicited in the production study was rather too casual for the kind of speech being generated by the Infovox system. Furthermore, the primary interest here is not in coarticulatory detail that arises from relatively rapid, casual speech; instead I am interested in the kind of coarticulatory effects which are intrinsic to the speech signal even in careful speech styles. By this I mean those effects which are an inevitable consequence of the dynamics of speech production, or at least which are common for speakers of SSBE. It is this kind of detail which may provide invaluable information for the perceiver of the speech signal, although, of course, coarticulatory effects characteristic of rapid or casual speech may well prove invaluable in synthetic speech which attempts to mimic such speech styles.

Given the problems with attempting to use the recordings made for the experiment in Chapter 2 as the model for adjustments to synthetic speech, a second recording was made. In this recording one male speaker, subject RJ, was selected from those who took part in the initial production study. RJ’s accent is perhaps best described as “educated Northern” but with substantial levelling towards the SBE standard. Particularly in formal recording conditions RJ’s speech closely approximates an SSBE accent. RJ was instructed to speak in a clear and fairly careful manner, at a rate that he found comfortable. The aim was to elicit maximally clear speech which would provide a good basis on which to model synthetic speech in order to improve its intelligibility. All other aspects of the recording were as described in Section 2.4 of Chapter 2.

The sentences for this second recording differ from those in Chapter 2, as by this time the sentences for perceptual testing had been designed and it made sense to use these in the new recording. The sentences accommodate various requirements for the perceptual tests such as controlling word-frequency, contextual cues etc. Also, in the initial production study no measurements were made in the sounds immediately preceding the consonant of interest. This is rectified here where measurements were made in all vowels and in the first consonant in the sequence in Figure 3.1, thus allowing ‘long-domain’ coarticulatory variation to be modelled.

A full description of the 36 sentences recorded follows in Section 3.2, with details of the sentences themselves in Table 3.1 (p 40). As in the experiment in Chapter 2, 10 repetitions of each sentence were elicited. Predictably, the coarticulatory effects found in
this more careful speech style were not always of the same magnitude as those found in the more casual speech of the first production study. However, the overall trends were in the same direction and for many sounds there were extensive context-induced differences in their acoustic realization. Given the overall similarity between the results, the data from the second recording are not discussed here. Appendix A gives the results from this recording in full.

3.2 Hypotheses and sentence design

The main hypothesis is that the synthetic versions of words which have been hand-edited to include coarticulatory variation will be more intelligible in background noise than the rule-generated versions, which lack such variation.

As well as a straightforward test of the perceptual salience of the coarticulatory detail, this experiment investigates whether lexical or contextual cues affect the degree to which systematic acoustic variation contributes to intelligibility. Such effects are referred to as *top-down* influences on perception. In order to investigate these effects, three kinds of words were used in the experiment:

- **Set A: Bisyllabic nonsense words** (Nonsense surnames e.g. Mr. Reeber)
 In Set A lexical effects are ruled out; none of the surnames are predictable by context and, since they are nonsense words, no phoneme can be assumed to be more likely to occur than another. These nonsense words allow the greatest control over factors that potentially influence speech perception and the lack of contextual information increases the chance of the acoustic detail having a quantifiable impact on intelligibil-
ity. It is predicted that the greatest perceptual effect of incorporating coarticulatory variation will be found for the nonsense words. This is the base-line against which other effects can be judged.

- **Set B: Monosyllabic real words** (e.g. *reef*)
 The monosyllabic real words in Set B are contained in semantically neutral sentences. Although these sentences offer minimal semantic help to the listener, they do give clues as to the syntactic category of the word (e.g. noun or verb). Harley (1995) argues that the role of sentential context in assisting on-line perceptual processes is very limited (cf. Connine 1990 and Samuel 1990). However, since the task in this experiment is more post-perceptual in nature, it might be expected that the limited contextual cues will play some role. The prediction is that coarticulatory detail will be less useful to the listener for these words than for the nonsense words, as there are certain other clues to aid lexical access. However, subjects were also told that some sentences would contain nonsense words, and they were not informed that such words are restricted to the surname category, i.e. Set A and its related fillers. This greatly expands the possible response set, and should allow the detection of all potential phoneme confusions.

- **Set C: Polysyllabic real words** (e.g. *bereavement*)
 In Set C the syllables of interest are incorporated in polysyllabic real words. This provides an even sterner test of the potential influence of small-scale acoustic cues on intelligibility, as the set of words which might be confused with the target word is far smaller than for the monosyllabic target words in Set B. Luce, Pisoni, and Goldinger (1990) describe such polysyllabic words as having low *neighbourhood densities*, i.e. a small set of phonetically similar neighbours. In order to maximise any potential confusions that might remain between words, and thus increase the chance that acoustic cues might influence the outcome, the carrier sentences are once again designed to provide minimal contextual information. It is predicted that coarticulatory detail will be least useful to the listener for this category of words.

Details of the sentences used for perceptual testing are given in Table 3.1. As described, the sentences fall into three groups. Set A are sentences beginning with a forename or a title of address followed by a nonsense surname containing the main syllable of interest. Set B are sentences in which the syllable of interest is contained in a monosyllabic real
Table 3.1: Sentences used in perceptual experiment. The sequence of interest is underlined in the orthographic transcription.

<table>
<thead>
<tr>
<th>Sentences</th>
<th>Sequence of interest & immediate context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set A:</td>
<td></td>
</tr>
<tr>
<td>Brother Heeber called at the monastery.</td>
<td>/ðə hi:ba k/</td>
</tr>
<tr>
<td>Amanda Reeber came to the party.</td>
<td>/ðə ri:bə k/</td>
</tr>
<tr>
<td>Samantha Lieber gave it to her.</td>
<td>/ðə li:bə k/</td>
</tr>
<tr>
<td>Father Ribber gave money to the church.</td>
<td>/ðə ri:bə k/</td>
</tr>
<tr>
<td>Mister Ribber gave me a present.</td>
<td>/tə ri:bə k/</td>
</tr>
<tr>
<td>Anita Libber cashed the cheque.</td>
<td>/tə lIbə k/</td>
</tr>
<tr>
<td>Peter Hebber comes here every week.</td>
<td>/pi:ə hebə k/</td>
</tr>
<tr>
<td>Julia Rebber can play the piano.</td>
<td>/li:ə rebə k/</td>
</tr>
<tr>
<td>Sister Lebber can’t come any more.</td>
<td>/sIə lIbə k/</td>
</tr>
<tr>
<td>Christopher Habber calls here all the time.</td>
<td>/fə hæbə k/</td>
</tr>
<tr>
<td>Mister Rabber gave up his job.</td>
<td>/tə ræbə k/</td>
</tr>
<tr>
<td>Agatha Labber can’t keep still.</td>
<td>/æθə læbə k/</td>
</tr>
<tr>
<td>Set B:</td>
<td></td>
</tr>
<tr>
<td>He saw the heap again.</td>
<td>/ðə hi:p əg/</td>
</tr>
<tr>
<td>There’s the reef again.</td>
<td>/ðə rif əg/</td>
</tr>
<tr>
<td>They found the leaf again.</td>
<td>/ðə lIf əg/</td>
</tr>
<tr>
<td>They discussed the other hip again.</td>
<td>/ðə hIp əg/</td>
</tr>
<tr>
<td>There was a problem with the rib again.</td>
<td>/ðə ri:b əg/</td>
</tr>
<tr>
<td>The difficulty is with the lip again.</td>
<td>/ðə lIp əg/</td>
</tr>
<tr>
<td>They looked at the hem again.</td>
<td>/ðə hæm əg/</td>
</tr>
<tr>
<td>They saw the ref again.</td>
<td>/ðə ref əg/</td>
</tr>
<tr>
<td>They talked about the left again.</td>
<td>/ðə lIft əg/</td>
</tr>
<tr>
<td>They remembered the ham again.</td>
<td>/ðə hæm əg/</td>
</tr>
<tr>
<td>He bought a ram again.</td>
<td>/tə ræm əg/</td>
</tr>
<tr>
<td>Samantha looked at the lamb again.</td>
<td>/sæmən læm əg/</td>
</tr>
<tr>
<td>Set C:</td>
<td></td>
</tr>
<tr>
<td>They discuss the haemoglobin.</td>
<td>/ðə himəg/</td>
</tr>
<tr>
<td>She writes about bereavement.</td>
<td>/bərvəmənt/</td>
</tr>
<tr>
<td>They talked about belief again.</td>
<td>/bi:lIf əg/</td>
</tr>
<tr>
<td>The other hippo was next.</td>
<td>/ðə hIpə w/</td>
</tr>
<tr>
<td>He thought the ribbon was great.</td>
<td>/ðə ri:bən /</td>
</tr>
<tr>
<td>They remembered the liver was there.</td>
<td>/ðə lIvə w/</td>
</tr>
<tr>
<td>It was a heavenly place.</td>
<td>/ə tə hæviən/</td>
</tr>
<tr>
<td>That’s a lot of revenue.</td>
<td>/tə lɔt ə rivən/</td>
</tr>
<tr>
<td>They must be eleven now.</td>
<td>/tə lIvən/</td>
</tr>
<tr>
<td>They considered the happening.</td>
<td>/ðə hæpən/</td>
</tr>
<tr>
<td>He looked at the wrapper again.</td>
<td>/ðə ræpə əg/</td>
</tr>
<tr>
<td>They wanted the overlap arranged.</td>
<td>/va læp ər/</td>
</tr>
</tbody>
</table>

word. In Set C the crucial syllable is contained in a polysyllabic real word. The sequence of interest is underlined in the orthography in Table 3.1 (see also Figure 3.1, page 38) and a phonetic transcription of this sequence and its immediate context follows each sentence. The h-context sentences are included here as they were recorded in the production experiment (reported in Appendix A) and they provided a basis for comparison with the r- and l-context acoustic data. In the perceptual experiment the h-sentences function merely as fillers, since the Infovox system already incorporates rules for varying /h/ according to vowel context, and so neither the consonant nor the vowel in these sentences are modified in any way.

3.3 Synthesis of the test sentences

3.3.1 Background to synthesis process

The r- and l-context sentences in Table 3.1 were typed individually into the Infovox Text-to-Speech system (Version 3.1), which at that stage of development was a formant synthesis system. Infovox was fairly typical of formant-based synthesis systems in that some context-induced variation in the target values for schwa is captured in the rules, but most other vowels have just a single canonical target form. The major variation in the realization of vowels, therefore, occurs in the formant transitions before and after they reach their targets. Context-induced phoneme boundary effects are relatively well-modelled, for instance differences in direction of formant transitions between vowels in different consonant contexts and differences in rates of formant transitions depending on whether the vowel is long or short are effectively captured. However, variation which spreads throughout a whole syllable, affecting the target formant frequencies of the vowel, as described in Chapter 2, is not captured by the synthesis rules. Certainly context-induced acoustic variation spreading to non-adjacent segments is not modelled in standard text-to-speech systems.

Having generated a synthesised version of each r- and l-sentence on the Infovox system, any obvious pronunciation errors were corrected and certain modifications were made to intonation and to the duration of segments in order to make the sentences as natural sounding as possible. These titivated versions of each sentence will be referred to as the rule-forms and constituted the basis for any further improvements based on coarticulatory-induced variation in the acoustic signal.
The next stage in the synthesis process was to incorporate in the rule-forms the kind of coarticulatory detail described in Chapter 2. These new ‘coarticulatorily rich’ sentences are referred to as the edited-forms. The coarticulatory detail is added to the synthetic speech by hand-editing, guided very much by auditory analysis of the quality of the output.

The hand-editing process started with the monosyllabic real words (Set B), since it was felt that it would be easiest to assess the appropriateness of any changes in these short real words. The method used to incorporate coarticulatory detail in the vowel of the CV sequences of interest is described for Set B in Section 3.3.2 below. Sections 3.3.3 and 3.3.4 outline the hand-editing process for the schwas surrounding the main syllable of interest and for the consonants. Finally, Section 3.3.5 describes the method used to incorporate coarticulatory variation in the sequences of interest in Sets A and C, the nonsense and polysyllabic real words.

3.3.2 Incorporating coarticulatory detail in vowels in Set B

Obviously the ideal way of incorporating context-induced variation in a synthesis system is to re-record the original ‘source’ speaker on whom the system’s formant frequency targets are based. In this way it would be possible to measure context-induced variation in formant frequencies and incorporate this directly in the rules for the system. This was not an option here, so a careful comparison was made of RJ’s speech with that of the Infovox system.

As well as the 12 sentences in Sets A to C in Table 3.1, RJ recorded a set of words and vowels in isolation. The formant frequencies in these isolated words and vowels (see Appendix B) were compared to those in equivalent vowels synthesised on the Infovox system. Unsurprisingly this comparison revealed, not only that RJ’s formant frequencies differ from those of the Infovox system, but also that his formant frequencies do not differ from Infovox’s in the same way for each vowel. F2 and F3 frequencies in RJ’s /i/ are approximately 400 and 550 Hz higher respectively than for the Infovox /i/. For /u/, however, RJ and Infovox have almost identical F2 and F3 frequencies. The general pattern is that high front vowels in RJ’s speech have considerably higher F2 and F3 frequencies than in Infovox, whilst differences in F2 and F3 frequencies for other vowels are smaller, indeed negligible for most back vowels.

These differences are not surprising (cf. Chapter 4 in Fant (1973) on non-uniform
formant scalings between male and female voices), but they do mean that a straightforward scaling of formant frequencies to create appropriate Infovox values was not possible, since the scaling value would have to be different for each individual vowel. For this reason a rather different approach was adopted.

Firstly, it is assumed that /h/ contexts provide a neutral environment for the production of the following vowels /i, ɪ, ɛ, æ/. Secondly, since the target values for these vowels produced by Infovox in all consonant contexts are identical, or ‘uncoarticulated’, these Infovox vowels can be regarded as being equivalent to the vowels which RJ produced only in h-contexts. This statement is strengthened by the fact that in the development of the Infovox system, canonical formant frequency targets for vowels were calculated based on data recorded from a speaker producing each vowel in the neutral /h/ context.

The formant frequencies for vowels in /hV/ sequences in RJ’s speech were taken as the standard from which vowels in other consonant contexts were said to vary. For each vowel in /r/ and /l/ contexts in RJ’s speech the degree and direction of formant frequency shift relative to the same vowel in the /h/ context was calculated. These absolute formant frequency shifts were then used to guide the modifications to the formant frequencies generated by rule in the Infovox system.

An example of the way in which new ‘coarticulated’ formant frequency targets were calculated is given in Table 3.2. The left-hand side of the table gives the frequency of F2 in /iː/ in RJ’s speech in the context of /h/ and /r/ respectively. The difference between the two is 119Hz. This value is then used to adjust the canonical F2 frequency for /iː/ in the Infovox system from 2074Hz in the rule-form to 1955Hz in the edited-form.

<table>
<thead>
<tr>
<th>RJ: F2 in /iː/</th>
<th>Infovox: F2 in /iː/</th>
</tr>
</thead>
<tbody>
<tr>
<td>/h/-context 2300Hz</td>
<td>/r/-context 2181Hz</td>
</tr>
<tr>
<td>/r/-context 2181Hz</td>
<td>rule form of /riː/ 2074Hz</td>
</tr>
<tr>
<td>Difference -119Hz</td>
<td>required change -119Hz</td>
</tr>
<tr>
<td></td>
<td>edited form of /riː/ 1955Hz</td>
</tr>
</tbody>
</table>

Table 3.2: Calculation of ‘coarticulated’ formant frequency targets for Infovox, to create the edited forms of the main vowel of interest.

Similar calculations were made for other formant frequencies in vowels in /r/
and /l/ contexts and the appropriate alterations were made to formant frequencies in the Infovox-generated speech. It must be emphasised that the measured contextual shifts in RJ’s formant frequencies were not treated as a simple algorithm to be straightforwardly imposed on the Infovox synthetic speech. Instead, the measured shifts in vowel formant frequency were used as a rule of thumb for improving the Infovox-generated speech and deviations from this were made if the experimenter felt that the resulting sound quality was better. Spectra and spectrograms of RJ’s speech and the synthetic speech were also compared to guide formant frequency alterations. Native speakers of SSBE were asked to judge the naturalness of the different synthetic stimuli, and these informal judgments were used to guide decisions about final formant frequency values in the hand-edited forms. All changes to formant frequencies were in the same direction as for RJ’s speech, but in many cases the changes made in the Infovox-generated speech were considerably smaller than the effects found in RJ’s speech. Reasons for this are discussed in more detail in Section 3.10.1.

3.3.3 Incorporating coarticulatory detail in schwas in Set B

As well as changes to formant frequencies in the vowel of the main syllable of interest, modifications were made to the schwas immediately surrounding this syllable. The method adopted for such changes was identical to that used for the main vowel. Formant frequencies were measured in RJ’s speech and the difference in frequency between the schwas in /h/ contexts and in /r/ and /l/ contexts was calculated. These differences were used to guide changes to formant frequencies in the synthetic speech.

This was felt to be a satisfactory approach for the first schwa in the sequences of interest, given its position immediately prior to the consonant purported to be exerting the coarticulatory influence (e.g. ə in ə 1 ræm ə 2 gen, a ram again).

The method was rather less satisfactory for the second schwa, where coarticulatory effects are likely to be attributable to the more immediate consonantal context. For instance, for ə 2 in ə 1 ræm ə 2 gen, the acoustic realization of the schwa is influenced more by the /m/ and /g/ than by the /r/ of the preceding syllable. Various solutions to this problem were considered. Implementing RJ’s formant frequencies for ə 2 directly in the Infovox speech did not produce good results, probably because of the substantial differences between many of his vowels and those of the Infovox system. A schwa in isolation was recorded for RJ’s speech and compared with that for the Infovox system and the possibility of establishing
some kind of formant scaling algorithm based on these measurements was considered. But schwa varies considerably in context, and the extent to which RJ's formant frequencies differ from those in the Infovox system depends greatly on the particular vowel involved. So it was felt that a single scaling factor for schwa would not accurately translate between RJ's various schwas and those for the Infovox system.

Finally, it was decided to use exactly the same method of altering formant frequencies as described for the main vowel of interest and for α_1. So formant frequencies in α_2 in RJ's speech in the context of /h/ were compared to formant frequencies in the context of /r/ and /l/, and the difference was used to guide modifications to the synthesised versions of each word. Again the decisive factor was auditory assessment of the hand-edited stimuli, and this suggested that the method outlined in Section 3.3.2 produced satisfactory improvements even for this schwa.

3.3.4 Incorporating coarticulatory detail in consonants in Set B

Having settled on a method of making alterations to vowel formant frequencies, the next question was how to tackle consonantal variation. Formant frequencies were measured in /r/ and /l/ in RJ's speech (see Table A.3, Appendix A). In the Infovox system there was a single canonical target form for /r/ and in RJ's speech there was also relatively little contextual variation in this sound. The formant frequencies in the Infovox /r/ were very similar to those in RJ's speech for /r/ in the context of /i/ and /I/ and so for those vowel contexts the values were left as generated by the synthesis rules. This was judged to generate natural-sounding tokens. In the /e/ and /æ/ contexts, however, the best sounding results were obtained by lowering the frequencies of both F2 and F3 in /r/ slightly.

For /l/ the situation was more complex; the Infovox version of /l/ already incorporated some context-induced variation, in that the rules calculate the frequency of F2 in /l/ by a formula relating it to the frequency of F2 in the following vowel. However, the values chosen were appropriate for an American English rather than a British English /l/. This in fact resulted in a highly intelligible /l/ and was not modified in the initial development of Infovox since there were many more pressing problems with the synthesis system. When an attempt was made to incorporate formant frequency values for /l/ which are more typical of the British English consonant, this resulted in a fall in intelligibility in perceptual tests (Hawkins, personal communication) and so the American values were reintroduced.
The problem faced here was that once changes had been made to the vowels in the context of /l/, as appropriate for a British English speaker, it seemed likely that the American English /l/ would detract from the perceptual coherence of the synthesised version. American English /l/ is generally more velarized or pharyngealised than British English /l/, even in the contexts where one would expect a relatively clear /l/ (cf. Jones 1972), and so another attempt was made to introduce formant frequency values more appropriate for British English.

Unsurprisingly, formant frequencies for RJ’s /l/ differ radically from those in the Infovox system. After some experimentation it was felt that the best sounding versions of words containing /l/ were obtained by simply incorporating RJ’s formant frequency values in the synthetic speech. This had two advantages. Firstly, it improved the sound quality of the /l/ by using formant frequencies more typical of an SSBE /l/. Secondly, any contextually determined variation was automatically included in the new formant frequencies. One disadvantage of this approach is that it is not possible to separate potentially different perceptual consequences of these two factors. Any changes in intelligibility could be due either to the introduction of a British /l/ or to the incorporation of coarticulatory variation in the consonant or to a combination of these factors. However, the primary aim of this experiment was to increase the intelligibility of synthetic speech, and the conflation of various possible sources of improvements is not considered a problem.

3.3.5 Incorporating coarticulatory detail in Sets A and C

Having created hand-edited forms for the monosyllabic real words (Set B), the next issue was how to go about synthesising the nonsense and polysyllabic real word sets. Formant frequencies were also measured in RJ’s productions of these sentences and full details are given in Appendix A. Inevitably, absolute formant frequencies varied slightly between sets, presumably due to slight differences in the phonetic material surrounding the sequences of interest. However, the general type of coarticulatory variation found in Sets A and C was very similar to that found in Set B.

The question was whether to use the actual formant frequency measurements from RJ’s production of Sets A and C as the basis for making modifications in these sets, or whether to adopt piecemeal the same changes as implemented for Set B and described in the previous sections. The first option might initially appear to be the most obvious, and
the one most in line with modifying the synthetic speech to approximate natural speech as closely as possible. However, it creates a problem with regard to one of the major aims of the perceptual testing: if different acoustic modifications are made to each of Sets A, B and C then any differences highlighted in the perceptual tests between these sets cannot be said to be exclusively due to differences in top-down influences. Instead such differences may find their cause in the differences in the acoustic stimuli.

For this reason it was decided to implement the same acoustic changes in sets A and C as in set B. Of course if these changes are inappropriate for sets A and C, then this in itself creates a difference between the sets that is not exclusively top-down. However, using the formant frequency values from Sets A and C to guide the editing process did not seem to result in better quality edited forms than those produced using the values from set B. Furthermore, auditory assessment by the experimenter and other SSBE speakers suggested that the changes based on Set B were appropriate, and that the edited forms of words in Sets A and C did sound more natural than the rule-forms and that they were as natural as the edited Set B forms.

3.4 Filler sentences

In addition to the sentences in Table 3.1, 31 fillers (Table 3.3) were synthesised by rule on the Infovox system and were also modified to improve intonation and timing. Some of the fillers were designed to be similar to the target sentences, so as to distract from the purpose of the experiment and the regularity of the sounds being investigated. Other fillers were designed to break up the pattern of the sentences being investigated. The fillers included both real and nonsense words, as in the main experiment.

3.5 Adding noise to the speech stimuli

The sentences were generated and hand-edited on the Infovox text-to-speech system running on a Dell PC. In order to mix the sentences with background noise it was necessary to transfer them to a Silicon Graphics Indigo machine so that amplitude scaling of the speech files could be carried out. The sentences were recorded onto DAT tape and then digitised again at 16kHz using Silicon Graphics Indigo A.D. converters. A 10 second silence file was appended to each speech file and the length of the resulting file was calcu-
Fillers

Mister Jackson is a brilliant juggler.	Switch the bedside lamp on every night.
Simon Chandler writes for *The Guardian*.	The hairy moggoes loop the loop.
Mrs. Wheeler talked about that yesterday.	The car careered across the road.
In came the cat again.	Put a placky fish in it.
They discussed the matter of the playground.	Bring the greenish box over.
She talked about Peru again.	They took the limping flaily home.
There are problems with his brother.	Betty broke a wineglass last week.
They remembered the loaf was there.	The tiger ran across the clearing.
There’s another kettle in there.	I heard the purrums slowly loading up.
They said he plays every day.	Write a message in the scally bottle.
He came close to the edge again.	She saw the flubid cow cross the river yesterday.
In the Shigeree there is a chocolate cookie.	The clown gave a gomish smile.
The mysterious Kuffer lives in Albania.	Eat your dinner as fast as you can.
A terrible Mabber came tearing down the street.	This heavy book might do the job.
An enormous Pingola caused the catastrophe.	His lawyer gave a sneety smile.
The grandfather clock was slow.	

Table 3.3: Fillers for perceptual experiment. The word in bold was missing on the subjects’ answer sheet and they were required to fill it in.
lated in order to create a noise file of the same length. The noise file was made by using part of a 35s file of ‘cafe-noise’, which consists predominantly of speech from a number of people, punctuated at irregular intervals with laughter and other noises such as cutlery and crockery being moved around. Initially a signal to noise ratio of 10dB was selected, based on the findings of Hawkins and Slater (1994). The peak amplitude of each speech file and the accompanying noise file were calculated and the noise amplitude was scaled to be 10dB lower than that for the speech file. The speech and silence file was mixed with the amplitude-scaled noise file to create a file of speech in noise, followed by a period of noise alone.

A pilot experiment was run on 20 subjects to see if the 10dB s/n ratio was appropriate. The design for the pilot experiment was identical to that for the main experiment (see below). The sentences for this experiment differ from the Hawkins and Slater sentences in that they contain more real words than were used in that experiment. After analysing the results of the pilot study, it was decided that a rather lower s/n ratio was needed to avoid ceiling effects in the perception of the real words. A s/n ratio of 5dB was selected.

3.6 Experimental tapes: design considerations

On completion of the synthesis stage of the experiment there were two versions of every /r/ and /l/ context sentence in Sets A, B and C. One version was the rule form, as generated by the Infovox system with certain minor modifications to intonation and timing made by the experimenter. The second version was the edited form, modified to incorporate coarticulatory variation over a sequence of several segments. This made a total of 24 rule forms and 24 edited forms (12 each for /r/ and /l/) for comparison in perceptual testing. For each of the 12 /h/ context sentences, and the 31 fillers there was just a single (rule) form.

Two DAT tapes were prepared, each comprising one version (rule or edit) of each of the 24 r- and l-context sentences of interest. Half of the sentences on Tape 1 were edited forms, half were rule forms and Tape 2 contained the contrasting sentences. Each tape also contained all the h-context sentences and the fillers. These were randomized along with the r- and l-sentences. Each subject listened to just one of the two tapes, thus hearing a mixture of rule and edited forms overall and only hearing one version (rule or edit) of each experimental sentence.
There were two main considerations which lead to this experimental design. Firstly, it is well documented in the literature that significant learning effects are found as subjects gain experience in listening to synthetic speech. Improvements in subjects’ performance are found even after relatively little exposure to synthetic speech and without explicit training (cf. Pisoni, Greene, and Nusbaum 1985a, 1985b and Boogaart and Silverman 1992). In order to minimise such effects, the experiment is designed so that each subject hears either the rule or the edited form of each sentence, not both.

Secondly, it was felt that having one group of subjects doing all the rule forms and one doing all the edited forms might show artificial effects due to non-controlled differences between the subject groups. This decision is supported by the findings of Hazan and Shi (1993). They recruited a very homogeneous group of subjects: all aged between 18 and 32 years, all native speakers of English and students at University College London, all with little or no previous experience of synthetic speech and all tested for normal hearing (average pure tone thresholds of 20 dB HL or better from 0.25 to 8kHz in both ears). Yet they find that intelligibility scores of meaningless VCV items ranged over 47%. So, in line with Hawkins and Slater (1994), this experiment was designed such that each group heard an equal mix of rule and edited forms.

3.6.1 Statistical Analysis

The design constraints described in the previous section resulted in a mixed between groups and within groups design (see Figure 3.2 for a graphical representation of this). There is one between groups factor: Tape; and four mixed between and within groups factors: Word nonsense, monosyllabic-real and polysyllabic-real; Consonant /r, l;/ Vowel /i, i, e, æ/; and Type rule vs. edit. This design required different statistical analyses depending on the factor of interest.

At the level of tape × word × consonant × vowel, type is confounded with tape and so a between-groups analysis is required. However, once we go beyond a rule vs. edit comparison for individual words it is no longer a simple between-groups analysis. For instance when comparing the nonsense word rule-forms with the nonsense word edited-forms, each of these contains a mixture of between and within groups data. In these cases t-tests were performed. For t-tests it is necessary to stipulate whether the data are within groups or between groups (paired vs. unpaired design). Clearly this was not possible for
CHAPTER 3. INTELLIGIBILITY OF SYNTHETIC SPEECH

Figure 3.2: Schema for the design of the perceptual experiment.

Key:
- R = rule-form
- E = edited-form
many of the factors here and for this reason, both paired and unpaired t-tests were performed and the results compared. In fact both tests produced very similar results, and certainly agreed in terms of whether the analysis of interest was significant ($p < 0.05$) or not. So in the presentation of results the paired t-test figures are given.

3.7 Subjects

Subjects were all speakers of SSBE and students at the University of Cambridge, aged between 18 and 24. Each subject was paid for their participation in the experiment.

3.8 Procedure

For the main experiment 60 subjects were assigned to one of the two tapes, resulting in 30 responses for each of the rule or edited forms. These subjects had not taken part in the pilot experiment and so were naïve to the task. They were told that they would hear a series of sentences produced by a computer and that these would be played in background noise of the kind you might encounter in a café or bar. They were given an answer sheet which listed the sentences, each with a single word missing and they were instructed to fill in the missing word. They were told that the missing words were a mixture of real and nonsense words, so it was important to write down exactly what they heard rather than what they thought should go in the gap.

A practice set of 10 sentences was played to each subject to familiarise them with the task (see Table 3.4). Some of the practice sentences are semantically neutral, or contain nonsense words, rather like the sentences in the main experiment, others contain substantial contextual clues to the missing word. This was in order to get subjects used to listening to synthetic speech in noise, and accustomed to the more difficult task of identifying nonsense words etc. After completing the practice sentences subjects proceeded to the main part of the experiment, which took about 25 minutes.

3.9 Results and Discussion

For each word the maximum possible score was the number of its phonemes. 1 point was deducted for each false phoneme insertion. The minimum score per word
CHAPTER 3. INTELLIGIBILITY OF SYNTHETIC SPEECH

Table 3.4: Practice sentences for perceptual experiment.

<table>
<thead>
<tr>
<th>Practice sentences</th>
<th>Missing word</th>
</tr>
</thead>
<tbody>
<tr>
<td>You will need a and pencil.</td>
<td>pen</td>
</tr>
<tr>
<td>Their favourite meal is beans and chips</td>
<td></td>
</tr>
<tr>
<td>On the shelf there is a about it. book</td>
<td></td>
</tr>
<tr>
<td>They found another yesterday. rat</td>
<td></td>
</tr>
<tr>
<td>Anthea is riding a moped. Millow</td>
<td></td>
</tr>
<tr>
<td>A large lives in my street. shooby</td>
<td></td>
</tr>
<tr>
<td>Ask your brother about the again. farm</td>
<td></td>
</tr>
<tr>
<td>There is a marvellous over there. Deboo</td>
<td></td>
</tr>
<tr>
<td>There were seven on the table. mugs</td>
<td></td>
</tr>
<tr>
<td>The sycamore is very tall. tree</td>
<td></td>
</tr>
</tbody>
</table>

was 0. Raw scores were converted to percentage phonemes correct per word. A preliminary analysis of the data showed that over all three word sets the edited forms scored slightly less than the rule forms, 74% and 77% correct respectively (see Figure 3.3). This appears at first sight to contradict the main hypothesis (see page 38). However, it appeared that the attempts to improve intelligibility in the edited forms had been least successful for the l-context syllables, and that this half of the data set might account for the majority of lower scores on the edited forms, thus obscuring greater success for the r-context syllables.

Figure 3.3: Percentage phonemes correct for rule and edited forms, averaged over all tokens.
The problems with /l/ are not altogether surprising. I have mentioned that the coarticulatory variation in vowels in the context of /l/ was much less straightforward and less well understood than for vowels in the context of /r/. Variation of vowels in the context of /l/ was also relatively limited (see Chapter 2). So at the synthesis stage it was difficult to know exactly what kinds of changes to make in order to improve the overall quality. Furthermore, /l/ in the Infovox system was always one of the most intelligible consonants, even though the formant frequencies for this consonant were based on measurements for American English /l/. Attempts to model a British /l/ were not satisfactory. This is confirmed by the perceptual data where the majority of the edited forms of l-words are either unchanged in intelligibility compared with the rule forms, or less intelligible (see Table 3.5).

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Nonsense rule</th>
<th>Monosyll. rule</th>
<th>Polysyll. rule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>edit</td>
<td>edit</td>
<td>edit</td>
</tr>
<tr>
<td>/i/</td>
<td>88</td>
<td>94</td>
<td>78</td>
</tr>
<tr>
<td>/I/</td>
<td>78</td>
<td>74</td>
<td>79</td>
</tr>
<tr>
<td>/ɛ/</td>
<td>73</td>
<td>77</td>
<td>86</td>
</tr>
<tr>
<td>/æ/</td>
<td>78</td>
<td>86</td>
<td>78</td>
</tr>
</tbody>
</table>

Table 3.5: Percentage phonemes correct for the rule and edited forms of the l-context words for each of the word sets and vowel types.

Given these problems, the discussion here focuses solely on the results for the r-context syllables. Patterns of coarticulatory variation in vowels under the influence of this consonant were much more systematic than in the l-context syllables. Whereas /l/ has only a small coarticulatory influence on surrounding vowels, and this effect is highly dependent on the nature of the vowel concerned, /r/ has a totally predictable effect of lowering F2 and F3 frequencies in vowels relative to their frequency in /h/ contexts. Although the degree of formant frequency lowering in the context of /r/ varies from vowel to vowel, it was at least clear that F2 and F3 frequency should be lowered to some extent in the edited-forms in order to improve their intelligibility.
3.9.1 The r-syllable results

Figure 3.4 shows the percentage phonemes correct in the r-syllables for the rule forms vs. the edited forms averaged across word and vowel types. The edited forms score 77% compared with 72% for the rule forms ($t(359)=2.73$, $p < 0.007$, paired t-test). Thus for the r-context words the main hypothesis is supported: incorporation of coarticulatory detail in the edited forms results in a significant increase in intelligibility.

![Bar chart showing percentage phonemes correct for rule and edited forms.](image)

Figure 3.4: Percentage phonemes correct for the rule and edited forms of the r-context words.

Analysis by word set

Figure 3.5 shows the phonemes-correct scores for the nonsense words and the monosyllabic and polysyllabic real words separately. As predicted, it is the nonsense words which show the greatest improvements in intelligibility, with the edited forms scoring 11% more than the rule forms ($t(119)=5.66$, $p < 0.0001$, paired t-test). The advantage for the edited forms is rather less for the monosyllabic word set, at 8% ($t(119)=3.027$, $p < 0.003$, paired t-test). However, for the polysyllabic real word set it is actually the original rule forms, lacking the coarticulatory detail, which score more highly by 7%, although this only approaches statistical significance ($t(119)=1.92$, $p < 0.06$, paired t-test). Little or no improvement in intelligibility for the edited forms was expected for this word set, but deteriorations in intelligibility were not.

Table 3.6 shows the % difference (edit − rule) phonemes correct for each individual
Figure 3.5: Percentage phonemes correct for the rule and edited forms of the r-context words for each of the word sets.

<table>
<thead>
<tr>
<th>Words</th>
<th>% Δ (edit − rule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsense</td>
<td></td>
</tr>
<tr>
<td>reeeber</td>
<td>+8</td>
</tr>
<tr>
<td>ribber</td>
<td>+7</td>
</tr>
<tr>
<td>rebber</td>
<td>+22</td>
</tr>
<tr>
<td>rabber</td>
<td>+8</td>
</tr>
<tr>
<td>Monosyll.</td>
<td></td>
</tr>
<tr>
<td>reef</td>
<td>+7</td>
</tr>
<tr>
<td>rib</td>
<td>−11</td>
</tr>
<tr>
<td>ref</td>
<td>+7</td>
</tr>
<tr>
<td>ram</td>
<td>+26</td>
</tr>
<tr>
<td>Polysyll.</td>
<td></td>
</tr>
<tr>
<td>bereavement</td>
<td>−66</td>
</tr>
<tr>
<td>ribbon</td>
<td>+28</td>
</tr>
<tr>
<td>revenue</td>
<td>+21</td>
</tr>
<tr>
<td>wrapper</td>
<td>−12</td>
</tr>
</tbody>
</table>

Table 3.6: Percentage difference phonemes correct (edit − rule) for each individual word.
word. Focussing on the polysyllabic real word set, intelligibility is higher in the edited forms of *ribbon* and *revenue* by 28% and 21% respectively. However, intelligibility decreased in the edited forms of the other two words, by 12% for *wrapper* and 66% for *bereavement*. Thus the overall fall in intelligibility for the set is caused by problems with the single word *bereavement* and if we remove this word from the set, the edited forms of the polysyllabic real words score 86%, which is 11% more than the rule-forms for the same set. Listening to the edited form of *bereavement* now, it appears that the problems arose because the edited portion is ‘over-coarticulated’. This is probably because the edited portion was modelled on a less formal speech style than the remainder of the sentence, This could be rectified in future experiments by reducing the extent to which vowel formants are lowered in the context of the rhotic consonant. See section 3.10.1 for further discussion.

3.10 Summary and conclusions

Although the l-context words show little or no improvements for the edited forms, this was not altogether unexpected. Previous work on the Infovox system shows that /l/ is already a very intelligible consonant. The consonant implemented in the system is based on American /l/ which is probably too velarized for British English, and some attempt was made to rectify this. However, it was not clear what changes should be made, and more work will have to be done on this if improvements in naturalness and intelligibility are to be made. As well as finding context-induced variation in F2 in /l/, Bladon and Al-Bamerni (1976) find significant variability in F1. This formant frequency was not included in the analysis here and it is possible that better results would have been obtained by including F1 variation in the synthesized tokens.

The production data for the r-context words had far clearer and more systematic trends than the l-context data and so it is not surprising that the greatest improvements in intelligibility after editing are seen for the r-context words. As predicted, the nonsense words show greatest improvements in intelligibility, followed by the monosyllabic real words. There were problems in the polysyllabic real word set, but even here two out of four words show significant improvements. And in fact if the word *bereavement* is removed from this set the edited forms are 11% more intelligible than the rule forms. This is contrary to expectation, as I had predicted that there would be less room for improvement in the polysyllabic real word set, since the rule-forms of these words are more intelligible than
the rule forms for either the nonsense or monosyllabic real words. It is interesting that that polysyllabic words showed both the greatest individual improvements in intelligibility, for the edited forms of ribbon and revenue, and the greatest fall in intelligibility when the editing process is unsuccessful, as for bereavement.

It seems that if the acoustic detail for just a small portion of a word is wrong perceptual coherence is lost and perceptual errors are made even for segments that were unchanged in the editing process. There was no evidence in this experiment that lexical neighbourhood densities (cf. Luce, Pisoni, and Goldinger 1990) had any impact on the perceptual process. In fact longer words, with low neighbourhood densities were extremely sensitive to changes in just a small portion of the acoustic signal. This emphasises the importance of perceptual coherence and shows how easily intelligibility is lost if spectral details are inappropriate. It would be interesting to examine whether the same finding holds if the subjects are told that all words are real words. It is possible that they would then make greater use of contextual and other top-down knowledge, and that lexical neighbourhood densites would have a greater impact on results.

Fine acoustic detail has generally been neglected in the rules for speech synthesis systems because it is relatively subtle and basic intelligibility can be achieved without it. It was argued here that improving the naturalness of synthetic speech by incorporating systematic coarticulatory variation would also improve intelligibility, provided the perceptual tests were designed to avoid ceiling effects. Indeed a fairly low signal to noise ratio (5dB) was used in the experiment. Although the naturalness of the edited synthetic stimuli was not assessed experimentally, subjective auditory assessment by both the experimenter and unbiased speakers of British English suggested that the edited forms of words in this experiment were more natural-sounding than the rule forms. The experimental data demonstrate that fine acoustic detail can contribute not just to the naturalness of synthetic speech, but also to its intelligibility, at least in noisy listening conditions.

3.10.1 Speech style

The process of incorporating coarticulatory variation in the synthetic stimuli was not straightforward. Section 3.3 describes how formant frequencies from a single SSBE speaker were used to guide changes made to Infovox-generated synthetic speech. Although all the changes in formant frequency values were in the same direction as in the natural
speech, most were not of the same magnitude. It was found that formant frequency lowering in vowels in the context of /r/ had to be done on a far smaller scale in the synthetic speech than would be predicted from the measurements in natural speech. One consequence of overdoing the coarticulatory formant frequency lowering was an inappropriate vowel quality. Another, related impression, was of a clash of speech styles, where the over-coarticulated vowel sounds too casual in the context of its carrier sentence, as for bereavement. Similar problems with over-coarticulation were encountered with other words, but all these were fixed during the hand-editing process by reducing the extent to which formant frequencies were lowered.

It was concluded that the absence of small-scale coarticulatory variation in the majority of the synthesized carrier sentence means that rather less coarticulation sounds appropriate in the edited portion than is the case in natural speech. If this is true, it has great significance for the incorporation of coarticulatory detail in synthetic speech. It seems that for a synthesised word to be maximally intelligible, it must be made to sound as natural as possible, but must also cohere acoustically with the surrounding speech. If coarticulatory detail is introduced over longer stretches of the synthetic speech signal, some of these clashing speech style problems may be avoided. What this experiment shows is the importance of consistency and of retaining perceptual coherence over long stretches of the speech signal. If spectral properties of whole sentences are modified in line with the kind of coarticulatory variation found in natural speech, it is possible that even greater improvements in intelligibility would be found than have been demonstrated here.

3.10.2 Implications for synthesis applications

This experiment shows that listeners are sensitive to contextually induced variation in the acoustic signal spread over several segments. A base-line for the perceptual importance of this kind of acoustic detail is established by the results for Set A, the nonsense word set. Here there are no lexical or syntactic cues to assist the perception process and listeners are forced to attend closely to the acoustic signal. Spiegel, Altom, and Macchi (1990) make the useful point that many of the applications for text-to-speech systems involve large databases of surnames, placenames and so forth, which are often more similar to nonsense words than to real words. Thus Set A does not merely serve as a diagnostic tool, but is directly relevant to many text-to-speech applications.
Benoît, Van Erp, Grice, Hazan, and Jekosch (1989), amongst others, comment that meaningful sentences provide contextual clues whose effects on intelligibility cannot readily be quantified. They use this as an argument for focusing exclusively on semantically anomalous sentences in the perceptual analysis of synthetic speech. Whilst acknowledging the motivation for this approach, I feel it is vital to make some attempt at quantifying any differences in the importance of acoustic cues that may exist between anomalous and meaningful sentences. Clearly the most powerful demonstration of the importance of acoustic detail is to show perceptual effects in real words in meaningful sentences.

So, whilst Set A provides the most sensitive test of the perceptual salience of coarticulatory detail, the relevance of such detail to the perception of real words in sentential context is emphasised by the results for Sets B and C. Significant improvements in intelligibility are found for many of the monosyllabic and polysyllabic real words occurring in meaningful sentences and this is of direct relevance to many real-world synthesis applications.

The kinds of improvements in intelligibility documented here (7–28%), provide a strong case for the incorporation of fine acoustic detail in the rules for speech synthesis systems. The perceptual salience of this kind of detail has been demonstrated in a noisy environment, and the speech-style noise used in the experiment is very much like the background noise in locations where synthetic speech is typically listened to, for instance in open-plan offices, railway stations, airports, on public telephones and so forth. So the café-style noise used provides a realistic, application-specific test of the contribution of context-induced acoustic detail to the intelligibility of synthetic speech.

An important question is whether the kind of acoustic detail described here can contribute to intelligibility in anything other than noisy conditions. It could be said that these listening conditions impose rather unusual constraints on the perceptual process and it has been suggested that attention to small-scale acoustic detail is only necessary when the perceptual system is pushed to the limit. Results from speech-in-noise experiments might be considered irrelevant to more everyday conditions of spoken language comprehension.

But the experiments surveyed in Section 1.3.1 of the Introduction suggest that the lack of acoustic coherence in synthetic speech has an impact on speech perception even in optimal listening conditions. A range of tests comparing synthetic speech to natural speech show that synthetic speech detrimentally affects recall, speed of comprehension, a variety of higher-level cognitive processes and secondary task completion. This chapter described an
experiment in which background noise is used to avoid the kinds of ceiling effects often found in other perceptual testing conditions. It would be worthwhile to use some of the other tests discussed in the Introduction to strengthen claims of the importance of fine acoustic detail to the robustness of the speech signal and its relevance to real-world applications, but to do so goes beyond the scope of this thesis.

Having established that the incorporation of small-scale coarticulatory detail in synthetic speech can bring improvements in naturalness and intelligibility, the next stage was to explore other kinds of contextual variation which have been neglected in the coarticulation, perception and synthesis literatures. Chapters 4–6 explore a variety of coarticulatory effects in greater detail and provide indicators of where further perceptual testing might profitably begin.
Chapter 4

The temporal course of rhotic resonance effects

4.1 Introduction

Prosodic phonologists argue strongly that resonance effects can spread over longer stretches of the speech signal than single syllables. Kelly (1989) suggests that in his own West Midlands accent of English, in comparison with *Why was Henry late?*, the phrase *How did Ken relate?* has a distinct ‘frontness’ over the section underlined and more weakly in the section with the dotted underlining. However, no data are presented to substantiate such claims.

The evidence in Chapter 2 for r-colouring spreading to a non-adjacent schwa in /r V C a/ sequences was mixed. Four of the five speakers had r-induced formant frequency lowering for either F2 or F3 in schwas in this sequence. But the analysis of all 5 speakers averaged together did not show significant effects of /r/ on either F2 or F3 in the schwa. This result was viewed with some scepticism, since the experiment was primarily designed to investigate C-to-V effects within a single syllable, and not the spread of such effects to non-adjacent segments. So, for instance, the phonetic context following the schwa in the /r V C a/ sequences was not always well-controlled. Resonance effects in non-adjacent vowels were found in Tunley (1995), and in the experiment in Chapter 2 here, F2 averaged across all speakers was lower in schwas in /rCa/ sequences. This and the inter-speaker variability described in Chapter 2 suggested that long-domain effects deserved further investigation.
This chapter investigates the spread of rhotic resonance effects to non-adjacent segments in a more controlled way than was possible in the production study in Chapter 2. The spread of r-colouring is examined in both anticipatory and perseverative directions and factors such as stress and vowel quality are varied in order to establish criteria which favour or discourage the spread of rhotic resonance effects. Sequences examined were of the form shown in Figure 4.1, where \(V_1 \) and \(V_4 \) are the main focus of interest, being separated from the influencing rhotic consonant by two other segments. \(V_2 \) and \(V_3 \), which are directly adjacent to /r/ and /h/, are also analysed in this experiment.

![Figure 4.1: Schematized outline of design for long-domain experiment: showing sequences of interest and indicating with arrows the coarticulatory effects to be examined.](image)

The most regular and extensive consonantal resonance effects in the CV sequences described in Chapter 2 were found for /r/ rather than /l/. Indeed the only coarticulatory effects in the non-adjacent schwa were in the context of the rhotic consonant. Since this experiment is a preliminary investigation of long-domain effects, it focuses exclusively on the influence of /r/. The aim is to establish some principles of long-domain coarticulation, and this is best done using a consonant which is known to exert extensive local effects.

4.2 Experimental Design

4.2.1 Independent variables

Table 4.1 gives details of the independent variables for this experiment. It was predicted that stress would play a significant role in determining the spread of coarticulatory effects, and so the stress of the ‘influencing’ syllable (that with /r/ or /h/ as its onset) and of the ‘influenced’ syllable (that containing \(V_1 \) or \(V_4 \)) was varied. Each syllable was either stressed or unstressed, so there was a total of four possible stress patterns, as exemplified in Table 4.2. In all cases the stressed syllables are strong accented syllables and the unstressed syllables are weak. Strong unaccented syllables, such as the first syllable in ‘catas\'trophic’
are not investigated here.

<table>
<thead>
<tr>
<th>Independent Factor</th>
<th>levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) ‘Influencing’ consonant</td>
<td>/r/ or /h/</td>
</tr>
<tr>
<td>ii) Stress of the ‘influencing’ syllable</td>
<td>stressed or unstressed</td>
</tr>
<tr>
<td>iii) Stress of the ‘influenced’ syllable</td>
<td>stressed or unstressed</td>
</tr>
<tr>
<td>iv) Nucleus of the ‘influenced’ syllable</td>
<td>/iɪæ/ when stressed</td>
</tr>
<tr>
<td></td>
<td>/iɪə/ when unstressed</td>
</tr>
<tr>
<td>v) Direction of spread</td>
<td>anticipatory or perseverative</td>
</tr>
</tbody>
</table>

Table 4.1: Independent variables. The ‘influenced’ syllable is that containing V₁ or V₄ in Figure 4.1, depending on direction of coarticulatory spread. The ‘influencing’ syllable is that with /r/ or /h/ as its onset.

<table>
<thead>
<tr>
<th>Stress</th>
<th>target-σ</th>
<th>r-σ</th>
<th>Subsection of sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>s</td>
<td>‘Eva raced . . .’</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>s</td>
<td>‘Sammy for racing . . .’</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>w</td>
<td>‘Eva remarked . . .’</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>w</td>
<td>‘Sammy for a crossword . . .’</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2: Possible stress patterns for sequences investigating anticipatory r-colouring in /i/. The sequence of interest (/i C o r/) is underlined in the orthography. The target-σ (V₁ in Figure 4.1) is that with /i/ as its nucleus and the r-σ is that with /r/ as its onset. s = strong, w = weak. The intervening syllable is always weak here. For full details of the sentences from which these examples come, see Table 4.3, page 67.

Chapter 2 described how vowels are not equally susceptible to the influence of r-colouring in CV sequences. It is predicted that this will also be true for vowels further removed from the r-context. The same four vowels /iɪæ/ which were investigated in CV sequences in Chapter 2 are included here as V₁ and V₄ of the sequence in Figure 4.1. Where this syllable is unstressed it is always weak and so the vowel set is reduced to /iɪə/, as neither /ɛ/ nor /æ/ occur in weak syllables in English.

The final factor investigated is the direction of spread of r-colouring. Chapter 2 focused exclusively on perseverative effects, here anticipatory coarticulation is also examined.
4.2.2 Hypotheses and Questions

1. In /Vr/ and /rV/ sequences /r/ will be most susceptible to rhotic influence, followed by /i/ and /e/, with /æ/ showing little influence. The same pattern of susceptibility to rhotic colouring will be found for vowels which are not directly adjacent to the influencing consonant (V₁ and V₄).

2. The most marked resonance effects will be found:

 (a) in unstressed vowels, as these are prone to articulatory undershoot,

 (b) when the influencing consonant is stressed, and thus fully articulated.

3. Question: Will resonance effects extend more in the anticipatory or the perseverative direction?

4.2.3 Sentences

Criteria for sentence design

As in the experiment in Chapter 2, sentences were designed to be as natural-sounding as possible, whilst maintaining phonetic control. In each case the vowels directly adjacent to /r/ are either /i/ or /a/. Since this is a preliminary study of the spread of resonance effects to non-adjacent segments the intervening vowels are chosen for their predicted propensity to allow r-colouring to spread to neighbouring syllables. The first production study showed that /i/ is very susceptible to r-colouring, and so it is assumed that this vowel will permit the spread of rhotic resonance effects to surrounding syllables. Schwa is known to be susceptible to coarticulatory influence both in acoustic (Fowler 1981a) and articulatory terms (Alfonso and Baer 1982). Schwa is therefore included in those cases where V₂ or V₃ are unstressed.

The consonants selected to occur between the influencing /r/ and V₁ or V₄ are either bilabials or labiodentals. Since they do not involve tongue articulations it was predicted that labial consonants will not inhibit the spread of lingual resonance effects to surrounding segments. Where possible /r/ were avoided in the context immediately surrounding the sequence of interest. Where this proved impossible, or resulted in unnatural sounding sentences, the context was at least kept constant between the h- and r-context sentences.
The phonological weight of syllables (heavy vs. light) was not explicitly controlled in this experiment, as this would have complicated sentence design beyond what was deemed practical. However, it was recognized that, like stress, syllable weight has an impact on rhythm and relative syllable durations and as such is likely to have an impact on susceptibility to coarticulatory influence. Due to the focus on short monophthongal vowels and a need to control segmental context, very simple syllable structures are generally used here. Using Laver’s (1994: p156) definition, 89% of all syllables of interest \((n=112)\) are light, that is they have a short vowel and optionally a singleton consonant coda. Of the remaining 11% heavy syllables (those containing long vowels or with more than one consonant in the coda), 8 tokens are accounted for by stressed /i:/ syllable nuclei, representing 7% of the total. So overwhelmingly this experiment is an investigation of coarticulatory effects in stressed and unstressed light syllables.

It is well known that word boundaries affect some acoustic phonetic parameters, especially the temporal properties of syllables. Klatt (1973) finds vowels before voiceless consonants to be 35% shorter than before voiced consonants in monosyllabic English words, whereas in bisyllabic words the vowels are only 22% shorter. Lehiste (1972) finds that stressed syllables decrease in duration when unstressed syllables are added to a word. This work is extended by White and Turk (1998), who claim that the domain of syllable compression begins with a stressed syllable and ends at a word boundary. However, a preliminary study here suggested that word boundaries did not affect the spread of rhoticity from one segment to another and this guided the decision not to actively control for word boundaries.

In fact most sentences in this experiment are relatively well controlled for word-boundary effects. Within the sentences for a particular direction of coarticulatory spread and for each vowel set the word boundaries occur in comparable positions. This control of word boundaries is weakest for the sentences investigating perseverative spread where you have examples like ravine /rəvɪn/ vs. her vino /hər ˈvɪnoʊ/. In the second case there is a word boundary between the /h/ and the vowel of interest /iː/, whereas in the first case the /r/ and the vowel of interest are within a single word. Additionally, in a few cases the /r/ is present by virtue of its status as a linking /r/, as in for a map. Pilot work suggested that there was no difference in the realisation of linking and non-linking /r/s.
Anticipatory spread of coarticulatory effects

Table 4.3 describes the sentences used to investigate anticipatory coarticulation. The first column of the table gives an overview of the phoneme sequence of interest and marks the stressed syllables. In each case \(V_1 \) is the main vowel of interest and the second column describes the vowels examined in this syllable. The third column lists the sentences in which the sequences of interest are incorporated.

<table>
<thead>
<tr>
<th>Phoneme sequence</th>
<th>(V_1)</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_1) (C) (V_2) { (r) (h }</td>
<td>/i/</td>
<td>Eva raced up the hill.</td>
</tr>
<tr>
<td>(V_1) (C) (V_2) { (r) (h }</td>
<td>/i/</td>
<td>Pippa hate(s) upper class people.</td>
</tr>
<tr>
<td>(V_1) (C) (V_2) { (r) (h }</td>
<td>/i/</td>
<td>Emma gave(s) upper class people.</td>
</tr>
<tr>
<td>(V_1) (C) (V_2) { (r) (h }</td>
<td>/i/</td>
<td>Ask Emma for a crossword clue.</td>
</tr>
<tr>
<td>(V_1) (C) (V_2) { (r) (h }</td>
<td>/i/</td>
<td>Remark on his rudeness.</td>
</tr>
<tr>
<td>(V_1) (C) (V_2) { (r) (h }</td>
<td>/i/</td>
<td>Hypocritically agreed.</td>
</tr>
<tr>
<td>(V_1) (C) (V_2) { (r) (h }</td>
<td>/i/</td>
<td>Ask Sammy for crossword clue.</td>
</tr>
<tr>
<td>(V_1) (C) (V_2) { (r) (h }</td>
<td>/i/</td>
<td>Give Joseph a crossword clue.</td>
</tr>
<tr>
<td>(V_1) (C) (V_2) { (r) (h }</td>
<td>/i/</td>
<td>Ask Joseph for crossword clue.</td>
</tr>
</tbody>
</table>

Table 4.3: Sentences: Anticipatory spread of /\(r \)/ colouring. The sequence of interest is underlined in the orthography. (See also Figure 4.1(a), page 63.)

Perseverative spread of coarticulatory effects

Table 4.4 describes the sentences used to investigate perseverative coarticulation. The table is constructed in a similar manner to Table 4.3. In each case the main vowel of interest is \(V_4 \).
Table 4.4: Sentences: Perseverative spread of /r/ colouring. The sequence of interest is underlined in the orthography.

(See also Figure 4.1(b), page 63.)

<table>
<thead>
<tr>
<th>Phoneme sequence</th>
<th>V_4</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ ’r } V_3 C ’h V_4</td>
<td>/i:/</td>
<td>The trick with perforated paper is to ‘rip’ evenly.</td>
</tr>
<tr>
<td></td>
<td>/i/</td>
<td>The physio moved the ‘hip’ evenly.</td>
</tr>
<tr>
<td></td>
<td>/e/</td>
<td>The bruise on her ‘rib’ implicated all of them.</td>
</tr>
<tr>
<td></td>
<td>/æ/</td>
<td>The bruise on her ‘hip’ implicated all of them.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The bruise on her ‘rib’ emphasized her injuries.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The bruise on her ‘hip’ emphasized her injuries.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>She clutched her ‘rib’ abjectly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>She clutched her ‘hip’ abjectly.</td>
</tr>
<tr>
<td>{ ’r } V_3 C ’h V_4</td>
<td>/æ/</td>
<td>He was on the P’rivy Council for years.</td>
</tr>
<tr>
<td></td>
<td>/æ/</td>
<td>And then the ‘hippy counted the years.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>He cracked a ‘rib in a fall.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>She cracked her ‘hip in an accident.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>They sent Jack the ‘Ripper to prison.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>He was even ‘hipper than Elvis.</td>
</tr>
<tr>
<td>{ ’r } V_3 C ’h V_4</td>
<td>/æ/</td>
<td>That’s a funny word</td>
</tr>
<tr>
<td></td>
<td>/æ/</td>
<td>for ra’vine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for her ‘vino.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for a ‘bin.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for her ‘vineyard.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for re’pel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for her ‘pellet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for a ‘map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for her ‘map.</td>
</tr>
<tr>
<td>{ ’r } V_3 C ’h V_4</td>
<td>/æ/</td>
<td>That’s not bad for a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMus. ([bɪˈmæʃ])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bemused uncle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bermuda shorts.</td>
</tr>
</tbody>
</table>
4.3 Recording

The 56 sentences in Tables 4.3 and 4.4 were put together with the sentences used in the experiments described in Chapters 5 and 6 (see Tables 5.1, 6.1, 6.2 and 6.3) making a total of 164 sentences. The sentences for each of the three production studies were sufficiently dissimilar to function as filler sentences for each other. All the sentences were randomized in 5 blocks to produce 5 repetitions of each sequence of interest. Three native speakers of Standard Southern British English, 2 female, 1 male, aged between 20–30 years read the sentences. The same instruction regarding reading-style was given as in the pre-synthesis recording described in Appendix A, namely that subjects should read in a clear and careful style, whilst maintaining naturalness.

Each speaker was given a practice session using a subset of the sentences, before starting the recording proper. This was in order to familiarize them with the task and to elicit an appropriate speaking style. Since there was a large number of sentences to be read, the recording was done in two sessions on consecutive days: in the first session 3 repetitions were recorded and in the second session the final 2 repetitions were recorded. The recording was made onto DAT tape in a sound treated room using a Sennheiser MKH 40 P48 microphone. The speech was digitised at 16kHz using Silicon Graphics Indigo A.D. converters.

4.4 Measurements and statistical analysis

The frequencies of F2, F3 and F4 were measured at the midpoint of all vowels shown in Figure 4.1. In the experiment in Chapter 2 only F2 and F3 were measured, but F4 is included here in case the low F4 typical of /r/ influenced F4 in surrounding vowels. The midpoints of the vowels were determined by hand after locating vowel onset and offset, as described in Chapter 2, Section 2.5. As in that experiment, formant frequencies were measured using the *xwaves* automatic formant tracking facility, 20-pole Burg lpc spectra with a 30ms rectangular window. Measurements were corrected by hand where obvious errors had been made by the formant tracker.

A separate statistical analysis was done for the formant frequency data from adjacent vowels and for the data from non-adjacent vowels. A repeated measures ANOVA was used in each case.
The adjacent vowel analysis used a $2 \times 2 \times 2 \times 7$ design with the following factors:

- **Consonant:** /r/, /h/;
- **Direction of influence:** anticipatory, perseverative;
- **Stress of influencing syllable:** stressed, unstressed and **Quality and stress of V_1 or V_4:** stressed /i i e æ/, unstressed /i i ø/. Vowel quality and stress are pooled in this final factor in order to make possible a single ANOVA for these adjacent vowels. The unequal numbers of stressed and unstressed vowels would have required separate ANOVAs if stress was included as a separate factor.

The unequal numbers of stressed and unstressed vowels meant that two ANOVAs were required for each formant frequency for the non-adjacent vowels, one for each stress condition. The non-adjacent vowel analysis is a $2 \times 2 \times 2 \times 4$ design for the stressed vowels, and a $2 \times 2 \times 2 \times 3$ design for the unstressed vowels, with the following factors:

- **Consonant:** /r/, /h/;
- **Direction of influence:** anticipatory, perseverative;
- **Stress of influencing syllable:** stressed, unstressed and **Quality of V_1 or V_4:** /i i e æ/ for the stressed vowels, /i i ø/ for the unstressed vowels.

4.5 Results and Discussion

4.5.1 r-colouring in adjacent vowels

This section describes the formant frequency variation in vowels which are directly adjacent to the /r/ or /h/ (V_2 and V_3 in Figure 4.1). I present the most general patterns first and then analyse each result in more detail where there are differences from this general pattern.

Figure 4.2 shows the frequencies of F2, F3 and F4 in vowels immediately before and after the /r/ or /h/. The formant frequencies are averaged across the different vowels and repetitions. In both V_2 and V_3 all three formants are much lower in the context of /r/ than /h/ ($F(1,2)=285.06, p < 0.004, F(1,2)=85.06, p < 0.01, F(1,2)=47.41, p < 0.02$ for F2, F3 and F4 respectively). The results for F2 and F3 in /rV/ sequences confirm the findings reported in Chapter 2 and this replication suggests that the patterns observed in that experiment are robust. What is new here is the finding that F4 frequency is also lower in the context of /r/.

The absolute formant frequencies vary between the pre- and post-consonantal positions, due to the occurrence of /i/s after the consonant, whereas all the pre-consonantal
vowels are schwa. This imbalance was inevitable given that one independent factor was the stress of the syllable containing the influencing consonant and this necessarily affects the quality of the following tautosyllabic vowel. However, the degree of r-induced formant frequency lowering is virtually identical in the anticipatory and perseverative directions. Indeed, there is no significant consonant×direction interaction for any of the formants \(F(1,2)=14.05, p < 0.06, F(1,2)=3.38, p < 0.2, F(1,2)=5.35, p < 0.15 \). The difference in F2 frequency approaches significance, and indeed r-induced formant frequency lowering for F2 is slightly more marked in the anticipatory direction than in the perseverative direction \((-250 \text{Hz} \text{ and } -200 \text{Hz} \text{ respectively})\). Perceptual tests would be required to resolve whether this difference in degree of F2 lowering is something that would need to be accurately modelled when incorporating such contextual effects in synthetic speech.

The lack of any clear consonant×direction interaction confirms the impression from Figure 4.2 that coarticulatory effects do not spread more readily in one direction than the other. This is reinforced by the results for the non-adjacent vowels and is discussed in greater detail in Section 4.5.4.

The adjacent vowels differ in vowel quality and stress between the anticipatory and perseverative directions, and so one would expect differences in the degree to which these vowels are susceptible to coarticulatory influence. All adjacent vowels in the anticipatory direction are unstressed schwas, whereas half of those in the perseverative direction are
stressed /i/. Focussing on the perseverative direction, Table 4.5 shows the difference in frequency of F2, F3 and F4 in /i/ and /a/ between the /h/ and /r/ contexts. Usually unstressed vowels, and in particular schwa, are considered to be the most variable vowels in both acoustic and articulatory terms. The results here are mixed; stressed /i/ is more susceptible to r-induced formant frequency lowering for F2, but rather less susceptible to such influence on F3 and F4 frequencies when compared to an unstressed schwa.

<table>
<thead>
<tr>
<th></th>
<th>h-context – r-context</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔF2</td>
<td>ΔF3</td>
</tr>
<tr>
<td>/i/</td>
<td>+273</td>
</tr>
<tr>
<td>/a/</td>
<td>+136</td>
</tr>
</tbody>
</table>

Table 4.5: Difference in F2, F3 and F4 frequencies (in Hz) in stressed /i/ and unstressed /a/ in /hV/ and /rV/ sequences. Measurements are made in V₃ of Figure 4.1. The differences are calculated as h-context – r-context.

4.5.2 Vowel-to-vowel coarticulation

Analysis of formant frequencies for the vowels adjacent to the /r/ or /h/ also reveal some interesting vowel-to-vowel coarticulatory effects. Given that the phonetic context surrounding the sequence of interest is fairly well controlled, it is assumed here that the vowels most likely to exert an influence on V₂ and V₃ are V₁ and V₄ respectively (see Figure 4.1, page 63). The influencing vowel is V₁ when formant frequencies are measured in V₂, and it is V₄ when the measurements are made in V₃. So the focus is on perseverative vowel-to-vowel coarticulation in the vowels which occur before the /r/ or /h/, and anticipatory vowel-to-vowel coarticulation in the vowels which occur after the /r/ or /h/. The influencing vowels may be stressed /i e æ/ or unstressed /i a/.

Figure 4.3 shows the average frequency of F2, F3 and F4 in V₂ and V₃ together in the different vowel contexts averaged across direction of influence. As expected, significant vowel-to-vowel coarticulation is evident for F2, F3 and F4 frequencies (F(6,12)=10.17, \(p < 0.0004 \), F(6,12)=13.44, \(p < 0.0001 \), F(6,12)=4.91, \(p < 0.01 \) respectively). The pattern of formant frequency variation for F2 at least follows fairly closely the expected frequency for this formant in the influencing vowels. For instance F2 frequency is highest in the context
of stressed /i/ and /I/ and rather lower in the context of stressed /æ/.

Figure 4.3: F2, F3 and F4 frequencies in vowels adjacent to the /r/ or /h/ (V₂ or V₃) in the context of stressed and unstressed vowels (V₁ or V₄). Frequency is averaged across direction of influence and consonant context.

See Figure 4.1 for details of sequences of interest.

Figure 4.3 suggests that stressed and unstressed influencing vowels (V₁ or V₄) have a rather different impact, particularly on the frequency of F3 and F4. Unstressed vowels engender lower F3 and F4 frequencies in V₂ and V₃ than do their stressed counterparts. However, the formant frequency lowering for vowels in the context of unstressed V₁ or V₄ is not consistent across consonant contexts. There is a significant consonant×vowel interaction for all formant frequencies (F(6,12)=3.59, p < 0.03, F(6,12)=19.51, p < 0.0001, F(6,12)=9.03, p < 0.001, for F2, F3 and F4 respectively).

Figure 4.4 shows schematized spectrograms of F2, F3 and F4 in the vowels directly adjacent to /r/ or /h/ divided by the stress of the preceding or following syllable. The difference in formant frequency between /h/ and /r/ contexts is greatest when V₁ or V₄ is unstressed. The formant frequencies for vowels in the immediate context of /h/ do not vary much depending on the stress of the adjacent syllable. But r-induced formant frequency lowering in adjacent vowels seems to be reinforced if either the preceding or following syllable is unstressed.

This effect is perhaps best explained in conjunction with the consonantal resonance effects for non-adjacent segments which are described in full in Sections 4.5.3. In brief, stressed V₁ and V₄ are resistant to the coarticulatory influence of /r/, whereas their un-
CHAPTER 4. TEMPORAL COURSE OF RHOTIC RESONANCE EFFECTS

4.5.3 r-colouring in non-adjacent stressed vowels

Table 4.6 gives the frequencies of F2, F3 and F4 in stressed V1 and V4 in the non-adjacent contexts of /r/ and /h/. There is virtually no difference in the frequency of F2 or F3 in these stressed vowels between the two consonant contexts (F(1,2)=2.98, p < 0.23 and F(1,2)=0.12, p < 0.76, for F2 and F3 respectively). The frequency of F4 is 71 Hz lower in r-contexts than in the h-contexts, but this is not statistically significant (F(1,2)=0.7, p < 0.5). There was large variation in the frequency of F4, probably due to difficulties in accurately measuring this formant frequency.

The lack of any effects which even approach significance in the stressed non-adjacent vowels suggests that such vowels are completely resistant to coarticulatory influence. Some evidence of r-colouring was found for the unstressed non-adjacent vowels, and section 4.5.4 focuses exclusively on the results for these vowels, describing other factors which condition the spread of r-colouring over this time domain.
Table 4.6: F2, F3 and F4 frequencies (in Hz) in stressed vowels in non-adjacent /r/ and /h/ contexts, averaged across vowels and direction of influence. Measurements are made in V1 and V4 (see Figure 4.1).

<table>
<thead>
<tr>
<th>Consonant context</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-context</td>
<td>1948</td>
<td>2807</td>
<td>3930</td>
</tr>
<tr>
<td>h-context</td>
<td>1941</td>
<td>2812</td>
<td>4001</td>
</tr>
</tbody>
</table>

4.5.4 r-colouring in non-adjacent unstressed vowels

Figure 4.5 shows that F2, F3 and F4 frequencies are lower in vowels in unstressed V1 and V4 where the adjacent syllable has an /r/-onset rather than an /h/-onset. This context-induced formant frequency lowering is statistically significant for F2 and F3 (F(1,2)=78.3, p < 0.013 and F(1,2)=62.66, p < 0.016), but not for F4 (F(1,2)=0.23, p < 0.68).

The difference in the frequency of F2 and F3 between the /r/ and /h/ contexts is small (13 and 44Hz respectively), and formant frequency lowering for F4 is not statistically significant. But small differences in all formant frequencies can contribute to an overall perceptually significant difference (cf. Kwong and Stevens 1999). Indeed impressionistic
observations suggest that r-colouring is perceptible in at least some of the non-adjacent vowels.

Stevens (1998) suggests that low F4 or F5 is due to tongue-tip retroflexion. So the fact that the significant formant frequency lowering here is for F2 and F3 suggests that these consonantal resonance effects may be tongue-body or lip-rounding effects. This conclusion is supported by data from West (1999), who explores acoustic and articulatory coarticulation over several segments before and after /r/ and /l/. She compares the sequences /a1 d a2 r/ and /a1 d a2 l/, and finds significantly lower F3 frequency in /a1/ before /r/ and also a higher upper lip and mid tongue position as measured using electromagnetic articulography. West does not include /h/ contexts, so her data are not directly comparable with the data presented here. However, the main finding here is confirmed, namely that r-colouring spreading over several segments primarily affects F3 frequency and involves some kind of lip-rounding and tongue-body effects. Clearly there is scope for further simultaneous articulatory-acoustic studies in this area.

Relative susceptibility of non-adjacent vowels to r-colouring

The experiment in Chapter 2 established a hierarchy of susceptibility to rhotic resonance effects for vowels in /rV/ sequences, which has /I/ > /i/ ≈ /Æ/ > /æ/. A similar comparison of relative susceptibility to coarticulatory influence is undertaken in the current experiment, looking at vowels separated from the influencing consonant by two segments, and adding three unstressed vowels to the analysis. As stated in section 4.5.3, none of the stressed vowels showed any evidence of coarticulatory influence, regardless of their vowel quality. So the susceptibility hierarchy for stressed vowels in /rV/ sequences is annulled in non-adjacent contexts.

For the three unstressed vowels, it was expected that schwa would show greatest effects, since it is known to be highly variable (c.f. Fowler 1981a, Alfonso and Baer 1982). Unstressed /I/ would also be expected to be susceptible to coarticulatory influence, given that it was so variable when stressed, and when unstressed it is known to function rather like /a/ (cf. alternations of /I/ and /a/ in pronunciations of words like analysis: /ænælɪsɪs/ vs. /ænælɪsɪs/, Roach and Harman 1997). Compared to /a/ and /l/, unstressed /I/ is expected to show rather smaller effects.

Figure 4.6 shows F2, F3 and F4 frequencies in unstressed /i I a/ in non-adjacent
/r/ and /h/ contexts and reveals a rather different pattern than expected. Schwa exhibits no rhotic resonance effects at all, and /i/ only shows any sign of r-induced formant frequency lowering for F4. It is unstressed /i/ which shows r-induced formant frequency lowering very clearly in F3 and to a lesser degree in F2. Indeed for F3 there is a significant consonant × vowel interaction (F(2,4)=9.46, p < 0.03). Planned comparisons for /r/ vs. /h/ contexts for F3 in each vowel confirm that only /i/ is susceptible to r-induced formant frequency lowering (F(2,4)=34.48, p < 0.004).

Figure 4.6: F2, F3 and F4 frequencies in /i I @/ in unstressed syllables in non-adjacent /r/ and /h/ contexts averaged across anticipatory and perseverative directions. Measurements are in V1 and V4 of Figure 4.1.

The apparent discrepancy between the predicted pattern of variability and the results may be an artifact of what are very small absolute differences in formant frequencies. However, the patterns of coarticulatory variation described were very consistent between the three speakers recorded here, which suggests that the results are reliable. Moreover, the experiment in Chapter 2 showed high front vowels to be extremely susceptible to coarticulatory influence from a rhotic consonant.

Stress of influencing syllable

Figure 4.7 shows F2, F3 and F4 in vowels in non-adjacent /r/ and /h/ contexts split according to the stress of the influencing syllable. Contrary to predictions, there seems to be no difference in degree of r-colouring depending on the stress of the influencing syllable (cf. Hypothesis 2(b), page 65). This is confirmed by statistical analysis, which
reveals no significant consonant \times stress-of-influencing-syllable interactions for either F2, F3 or F4 ($F(1,2)=0.45, p < 0.57, F(1,2)=6.82, p < 0.12, F(1,2)=2.23, p < 0.27$ respectively).

Direction of coarticulatory influence

As with the vowels directly adjacent to the influencing consonant, the non-adjacent vowels are equally susceptible to coarticulatory influence in the anticipatory and perseverative directions (see Figure 4.8). There is no significant consonant \times direction interaction for either F2, F3 or F4 ($F(1,2)=0.31, p < 0.6, F(1,2)=6.64, p < 0.12, F(1,2)=0.22, p < 0.69$ respectively).

4.6 Summary and conclusions

The main aim of the experiment here was to investigate long-domain rhotic resonance effects spreading to vowels which are separated from the influencing consonant by two other segments. One original hypothesis was that unstressed non-adjacent vowels would be more susceptible to r-colouring than their stressed counterparts. In fact, the only significant consonant-induced resonance effects for non-adjacent vowels were found in unstressed syllables, with r-induced formant frequency lowering for F2 and F3. So the original hypothesis

![Figure 4.7: F2, F3 and F4 frequencies in non-adjacent unstressed vowels (V_1 and V_4) in the context of /r/ and /h/. Left panel: influencing syllable is stressed, right panel: influencing syllable is unstressed. See Figure 4.1 for sequences of interest.](image-url)
can be strengthened to state that: only unstressed syllables are susceptible to r-colouring spreading from a non-adjacent segment. For example, you get r-colouring in the unstressed /ɪ/ of in, as in the phrase *He 'cracked a 'rib in a 'fall*, but there is no r-colouring in the stressed /ɪ/ of *implicated*, as in the phrase *The 'bruise on her 'rib 'implicated 'all of them*. This could be explained in terms of r-colouring not spreading across a foot-boundary. But this experiment showed that the same holds in the anticipatory direction, where there is no such boundary. So you get r-colouring in the unstressed /ɪ/ of *Ask 'Sammy for 'racing reports* but not in the stressed /ɪː/ of *Eva 'raced up the hill*.

Although individual formants showed relatively small absolute drops in frequency between the /h/ and /r/ contexts, it was suggested that in combination these effects are likely to be perceptually salient. My own listening suggests that long-domain rhotic resonance effects are salient for some vowels. The perceptual study in Chapter 3 here and other studies suggest that relatively small-scale formant frequency shifts can be perceptually salient, especially when such effects are evident over several segments in the acoustic signal (*cf.* Hawkins and Slater 1994).

Long-domain resonance effects have potentially far-reaching implications for theories of speech perception, text-to-speech systems and for phonetic theory in general. In Chapter 1 the importance of the acoustic coherence of the speech signal was emphasised.
and experiments were described which demonstrate the importance of surrounding context to the perception of individual phonetic segments. Whilst V_1 and V_4 are only subtly different between /h/ and /r/ contexts, when perceived in conjunction with the more dramatic contextual differences in vowels directly adjacent to the influencing consonant, such small acoustic differences may well contribute to the perceptual coherence of the signal. This kind of acoustic detail is likely to contribute to the naturalness and intelligibility of synthetic speech, since these effects seem to arise as a result of vocal tract dynamics, or at least occur systematically in this particular accent of English.

This experiment looked at both anticipatory and perseverative spread of coarticulatory effects, but few differences were found in the propensity of r-colouring to spread in either direction. For the vowels directly adjacent to the influencing consonant there was a suggestion that r-induced formant frequency lowering for F_2 was more marked in the anticipatory than the perseverative direction ($\Delta 250\text{Hz}$ vs. $\Delta 200\text{Hz}$), but perceptual tests would be required to establish whether this difference is salient. Sharf and Ode (1981) survey experimental work on the directionality of coarticulatory effects and find a diverse array of results. For every study that shows greater perseverative spread of coarticulatory influence, it seems there is another study showing greater influence in the anticipatory direction. Sharf and Ode conclude that the propensity to spread in one direction or the other is specific to particular coarticulatory effects. Although the experiment here did not reveal greater r-induced formant frequency lowering in either the anticipatory or perseverative directions, it is possible that it also did not reveal the full temporal extent of rhotic influence. Further experiments on longer strings of unstressed segments may find differences between the anticipatory and perseverative directions in the temporal extent of r-colouring in vowels.

This experiment highlighted some differences in the relative susceptibility of vowels to rhotic resonance effects spreading over intervening segments. A direct comparison with the susceptibility hierarchy of Chapter 2 is not possible, as stressed vowels were found to be totally resistant to coarticulatory influence over the longer time domain. Amongst the unstressed vowels r-colouring was evident to some degree in /i/ and /ɪ/, but not in schwa. This finding was in accordance with repeated findings from Tunley (1995) and for the CV sequences in Chapter 2, which show that high front vowels are particularly susceptible to the influence of rhotic consonants in SSBE.

The focus here has been almost exclusively on light syllables and in effect a binary stress distinction was adopted, comparing stressed accented with unstressed unaccented syl-
lables, ignoring stressed unaccented syllables. Having established some basic principles for the spread of coarticulatory effects in stressed accented and unstressed unaccented syllables, future work can explore the influence of prosodic structure on coarticulatory behaviour in more detail. One important issue is to disentangle the influence of metrical and phonological weight (stress vs. light/heavy) on the spread of resonance effects.

Results for the vowels directly adjacent to the influencing consonant confirmed the extensive formant frequency lowering for F2 and F3 in vowels in CV sequences described in Chapter 2. Significant formant frequency lowering was also found in F4 and it would be interesting to see if the inclusion of coarticulatory variation in this formant in synthetic speech might improve on the perceptual findings of Chapter 3. If acoustic coherence is indeed a crucial contributor to the naturalness and intelligibility of synthetic speech, then modelling context-induced variations in all formant frequencies should be important. In the hand-edited stimuli used in the perception experiment, the lack of modifications to F4 may have resulted in an inappropriate overall effect given the changes made to the frequencies of F2 and F3. This may partially explain why creating natural-sounding stimuli was so difficult, even when closely following patterns of formant frequency variation found for F2 and F3 in real speech. The fact that F4 was not modified may also explain why far smaller changes to the frequencies of F2 and F3 were tolerated in the synthetic speech than were found in natural speech (see Chapter 3, page 59). In the Infovox system F4 cannot be individually modified, but is controlled by altering a parameter which affects F4 and higher formants. It would be interesting to establish whether variation in F4 frequency is indeed perceptually salient, as this would suggest a need for F4 to be controlled separately from the higher formant frequencies.

Perhaps the most interesting finding in this experiment was that r-induced formant frequency lowering in adjacent vowels was greater when either the preceding or following syllable was unstressed. Since unstressed vowels are susceptible to coarticulatory influence even when not directly adjacent to the influencing /r/, it was suggested that unstressed V₁ or V₄ may enhance r-induced formant frequency lowering in V₂ and V₃ (see Figure 4.4).

These results support a more holistic approach to the speech signal than the traditional linear segmental analysis. Not only can coarticulatory effects spread to non-adjacent syllables, but when these effects do spread, they reinforce the coarticulatory influence on segments closer to the source of the effect. Vowels next to /r/ undergo formant-frequency lowering, and this r-induced formant frequency lowering is greatest when either the preced-
ing or following syllable is unstressed and thus is itself susceptible to coarticulatory influence. Modelling such effects in the rules for speech synthesis is not simple, as resonance effects cannot simply be incorporated in individual vowels by taking into account the adjacent or even the non-adjacent consonantal context. Instead the properties of other surrounding syllables must also be taken into account in determining the degree of consonantal influence on a particular vowel. Certainly such effects are not readily captured by concatenative techniques such as diphone synthesis. Indeed the fact that it is so hard to define a temporal domain for this kind of phonetic detail means that there are problems for concatenative synthesis, which might be more easily overcome with a traditional formant-based approach (cf. Local 1997, endnote (ii)). Concatenative techniques are inherently limited by their choice of units (hence the importance of appropriate unit selection, cf. Edgington 1998), whereas formant-synthesis can theoretically accommodate coarticulation effects over any domain, provided the rules are sufficiently detailed.

In conclusion, it seems that there are complex interactions between vocalic and consonantal resonance effects over fairly long stretches of the speech signal, and these are at least partly shaped by the stress of the syllables concerned. The foot does not appear to be optimal as a domain of coarticulatory influence, since foot-initial /r/ influences sounds in the previous foot as much as it influences following sounds within its own foot. Nor does the stress of the /r/ in any way affect the degree to which it influences surrounding vowels. What does seem to be a crucial factor in determining the spread of consonantal resonance effects is the stress of the influenced syllables. This experiment shows that consonantal resonance effects may spread to non-adjacent vowels, provided these occur in unstressed syllables. Future experiments should string together longer series of unstressed syllables to see just how far such effects may extend.

Finally, although the context-induced effects found in non-adjacent segments here were relatively small, the speech-style elicited was clear and careful. This was deemed to be the most suitable model for maximally intelligible synthetic speech. However, it is fair to assume that both short and long-domain coarticulatory effects would be greater in more casual or rapid speech and these effects may be crucial to the successful modelling of different speech styles by text-to-speech systems. A common demand from visually impaired users of reading systems is that they should read faster, enabling the user to ‘scan’ text in a similar way to sighted people. Speeding up synthetic speech is possible in most commercial systems, but the techniques for doing this are crude (cf. Imaizumi and Kiritani 1992), often with no
alteration of target values for segments to reflect the articulatory undershoot that occurs in rapid natural speech. The resulting speech is disproportionately hard to understand compared with fast natural speech (c.f. Ralston et al. 1991). Accurate modelling of fast- and casual-speech effects such as undershoot may greatly improve both the naturalness and intelligibility of text-to-speech systems which produce a variety of speaking styles. And, as Granström (1992) points out, the next generation of text-to-speech systems will be required to do precisely that.
Chapter 5

Realization of vowels after /r/ and /l/ in consonant clusters

5.1 Introduction

Chapters 2 and 4 examined the spread of lingual resonance effects to adjacent and non-adjacent vowels, controlling stress and vowel quality to determine which factors favour the spread of coarticulatory influence. The segmental sequences examined were relatively simple, consisting generally of a series of CVC sequences. These simple segmental structures are typical of the majority of work done on coarticulation. Given that about 40% of monosyllabic words in English begin with a cluster and about 60% end with a cluster (Spiegel, Altom, and Macchi 1990), neglecting consonant clusters in coarticulatory studies restricts the applications of such work in areas such as speech synthesis and speech recognition.

This chapter explores the acoustic characteristics of vowels after syllable onset clusters which include /r/ and /l/. Since Chapter 2 documents coarticulatory behaviour in tautosyllabic CV sequences, it made sense to begin the exploration of more complex cluster effects within equivalent single syllables where the basic rules of coarticulatory behaviour are already understood. The focus here, therefore, is limited to syllable onset clusters and tautosyllabic nuclei.
5.2 Research Questions

Empirical work on consonant clusters has tended to focus on durational changes to segments in the cluster itself (cf. Klatt 1979, Haggard 1973) or on assimilation of voicing characteristics (van den Berg and Slis 1987). Other studies explore the temporal overlap of gestures, for instance during stop-stop sequences (Hardcastle and Roach 1979, Hardcastle 1985), but none of these studies mention the consequent effects on following vowels. Given the relative lack of empirical work into the coarticulatory effects of clusters on vowels, this experiment is very much an exploratory study. The main aim is to provide acoustic data for vowels after a variety of clusters.

The clusters investigated are those containing consonants which it was thought may alter the articulatory realization of liquids and thus may affect the acoustic characteristics of the following vowels. Labials are not included, as they do not involve tongue gestures, and so were thought less likely to have an impact on the realization of lingual consonants such as /r/ and /l/. So the consonants chosen are alveolars and velars, which impose their own requirements on tongue configuration and thus may influence the configuration for /r/ and /l/. The liquids, alveolars and velars are incorporated in as wide a variety of clusters as is possible given the phonotactics of English. Full details of the clusters examined and the sentences in which they were incorporated are given in Section 5.3.

This experiment also documents vowel durations after the various syllable onset clusters, and again the literature provided few suggestions as to what might be found. Fowler (1981b) suggests that vowels may be shorter after consonant clusters than after singleton consonants, but also says that this shortening may be weaker in the perseverative direction, than it is for vowels occurring before clusters. Van Santen (1992a) says that he found no published work on the effect of preceding consonant clusters on subsequent vowel durations, which highlights the need for the kind of study described here. He presents a limited amount of vowel duration data, the main finding being that vowels are shorter after stop+liquid sequences than after the stop or liquid alone and he emphasises that his work needs replication.
5.3 Materials

Table 5.1 lists the sentences for this experiment. In all cases the syllable of interest is stressed and occurs near the start of the sentence, with nuclear stress being on a word later in the sentence. This is primarily for ease of sentence design and to enable direct comparison with the results from Chapter 2 where the CV sequences were also early in the sentence and carried non-nuclear stress.

Voicing of the consonant directly preceding the /r/ or /l/ is not well controlled, since place of articulation of the consonant is of greater interest here, as it is more likely to affect the tongue configuration for the following liquid. It was felt that differences between the supralaryngeal articulation of the voiced and voiceless consonants would be negligible compared with the kinds of differences which are of interest here, so voicing is varied when it allowed more natural-sounding sentences.

5.4 Recording

Sentences for this experiment were recorded along with those for the experiments in Chapters 4 and 6. Full details of the recording, subjects and references to the other sentences are given in Chapter 4, Section 4.3.

5.5 Measurements and statistical analysis

F2, F3 and F4 frequencies were measured at the midpoint of each vowel of interest. Midpoints were determined by hand as described in Chapter 2, Section 2.5.

Vowel durations were also measured, with vowel onset defined as described in Chapter 2, Section 2.5. In most cases the vowel of interest is followed by the nasal /m/ and here vowel offset was defined as coinciding with the sharp spectral discontinuity associated with the lower amplitude during the oral closure for the nasal. In the remainder of cases the vowel was followed by a /p/ and here vowel offset was defined as coinciding with the silence for the stop closure.

A repeated measures ANOVA was performed for each formant frequency in the vowels and on the durational data. In each case a 7×4 design was used, with factors: Onset: /r kr skr tr str l kl/ and Vowel: /i i e æ/.
Table 5.1: Sentences: The sequence of interest is underlined in the orthography.

<table>
<thead>
<tr>
<th>Vowel</th>
<th>σ-onset</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i:/</td>
<td>/r/</td>
<td>The ream of paper was delivered this morning.</td>
</tr>
<tr>
<td>/kr/</td>
<td></td>
<td>The cream of magnolia was chosen for the hall.</td>
</tr>
<tr>
<td>/skr/</td>
<td></td>
<td>The scream of terror curdled his blood.</td>
</tr>
<tr>
<td>/dr/</td>
<td></td>
<td>The dream of winning was fading fast.</td>
</tr>
<tr>
<td>/str/</td>
<td></td>
<td>The stream of insults continued unabated.</td>
</tr>
<tr>
<td>/l/</td>
<td></td>
<td>The Lima people are friendly and kind.</td>
</tr>
<tr>
<td>/gl/</td>
<td></td>
<td>The gleam of evil could be seen in his eye.</td>
</tr>
<tr>
<td>/s/</td>
<td>/r/</td>
<td>The rim of every glass was sparkling.</td>
</tr>
<tr>
<td>/gr/</td>
<td></td>
<td>The grim events unfolded rapidly.</td>
</tr>
<tr>
<td>/skr/</td>
<td></td>
<td>The scrim and save approach is the best.</td>
</tr>
<tr>
<td>/tr/</td>
<td></td>
<td>The trim evangelist was preaching about God.</td>
</tr>
<tr>
<td>/str/</td>
<td></td>
<td>The strimmer for cutting the grass back was hired.</td>
</tr>
<tr>
<td>/l/</td>
<td></td>
<td>The limb of the wounded man was amputated.</td>
</tr>
<tr>
<td>/gl/</td>
<td></td>
<td>The glimmer Felicity saw in the distance was bright.</td>
</tr>
<tr>
<td>/æ/</td>
<td>/r/</td>
<td>A ram is a sheep which has horns.</td>
</tr>
<tr>
<td>/gr/</td>
<td></td>
<td>A gram is a small amount to consume.</td>
</tr>
<tr>
<td>/skr/</td>
<td></td>
<td>A scrambled egg is delicious on toast.</td>
</tr>
<tr>
<td>/tr/</td>
<td></td>
<td>A tram is a streetcar on rails.</td>
</tr>
<tr>
<td>/str/</td>
<td></td>
<td>A strap is a thing which holds up your dress.</td>
</tr>
<tr>
<td>/l/</td>
<td></td>
<td>A lamb is a sheep which is young.</td>
</tr>
<tr>
<td>/kl/</td>
<td></td>
<td>A clam is a freshwater mussel.</td>
</tr>
</tbody>
</table>

Table 5.1: Sentences: The sequence of interest is underlined in the orthography.
5.6 Results and Discussion

5.6.1 Spectral characteristics of vowels after a variety of syllable onsets

Figure 5.1 shows F2, F3 and F4 frequencies measured at the midpoint of the vowel of interest after each of the syllable onset clusters. The results are averaged across speakers, vowels and repetitions. The figure shows a clear effect of syllable onset on the spectral properties of tautosyllabic following vowels, which is confirmed by statistical analysis (F(6,12)=25.82, p < 0.0001, F(6,12)=13.7, p < 0.0001, F(6,12)=16.52, p < 0.0001, for F2, F3 and F4 respectively). Interestingly, the pattern of formant frequency variation is very similar for F2, F3 and F4. Predictably, formant frequencies are significantly higher in vowels after the l-onsets than in vowels after any of the r-onsets (see Table 5.2 for details of statistics). What is new here is the pattern of results within the r- and l-onsets. Throughout this chapter I use the terms r-onsets and l-onsets to mean all syllable onsets containing /r/ or /l/, including the cluster onsets.

<table>
<thead>
<tr>
<th>Syllable onset</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/r/</td>
<td>1000</td>
</tr>
<tr>
<td>/kr/</td>
<td>1500</td>
</tr>
<tr>
<td>/gr/</td>
<td>2000</td>
</tr>
<tr>
<td>/skr/</td>
<td>2500</td>
</tr>
<tr>
<td>/tr/</td>
<td>3000</td>
</tr>
<tr>
<td>/dr/</td>
<td>3500</td>
</tr>
<tr>
<td>/str/</td>
<td>4000</td>
</tr>
<tr>
<td>/l/</td>
<td>4500</td>
</tr>
</tbody>
</table>

Figure 5.1: F2, F3 and F4 frequencies in vowels after various consonant clusters. Frequencies are averaged across vowels, speakers and repetitions.

For vowels after r-onsets formant frequencies are highest after singleton /r/, rather lower after velar+r and alveolar+r and lowest after the /skr/ and /str/ clusters. The velar+r and alveolar+r onsets and the /skr/ and /str/ onsets respectively seem to pattern together in terms of their influence on vocalic formant frequencies. The planned comparisons shown
in Table 5.2 generally confirm the pattern of formant frequency variation just described. The exception is that for F3 and F4 the difference between vowels in /r/ and velar+r contexts is not statistically significant.

<table>
<thead>
<tr>
<th></th>
<th>F2 in vowel</th>
<th></th>
<th>F3 in vowel</th>
<th></th>
<th>F4 in vowel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ</td>
<td>F(6,12)</td>
<td>p</td>
<td>Δ</td>
<td>F(6,12)</td>
<td>p</td>
</tr>
<tr>
<td>/r/−/velar+r/</td>
<td>+55</td>
<td>6.15</td>
<td>0.03</td>
<td>+82</td>
<td>2.35</td>
<td>0.15</td>
</tr>
<tr>
<td>/velar+r/−/skr/</td>
<td>+106</td>
<td>22.37</td>
<td>0.0005</td>
<td>+138</td>
<td>6.58</td>
<td>0.02</td>
</tr>
<tr>
<td>/alveolar+r/−/str/</td>
<td>+105</td>
<td>22.00</td>
<td>0.0005</td>
<td>+191</td>
<td>12.6</td>
<td>0.004</td>
</tr>
<tr>
<td>/velar+r/−/alveolar+r/</td>
<td>−3</td>
<td>0.03</td>
<td>0.88</td>
<td>−31</td>
<td>0.34</td>
<td>0.57</td>
</tr>
<tr>
<td>/skr/−/str/</td>
<td>−4</td>
<td>0.04</td>
<td>0.85</td>
<td>+22</td>
<td>0.16</td>
<td>0.69</td>
</tr>
<tr>
<td>/l/−/velar+l/</td>
<td>+47</td>
<td>4.5</td>
<td>0.055</td>
<td>+33</td>
<td>0.37</td>
<td>0.55</td>
</tr>
<tr>
<td>/l/s−/r/s</td>
<td>+111</td>
<td>69.79</td>
<td>0.0001</td>
<td>+255</td>
<td>50.32</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Table 5.2: Planned comparisons for F2, F3 and F4 frequencies in vowels after various consonant clusters. The final comparison is between all l-onsets and all r-onsets. The difference is calculated as indicated in the first column and is in Hz.

The pattern of slight formant frequency lowering for vowels after velar+l compared with vowels after singleton /l/ seen in Figure 5.1, is not statistically significant for any formant frequency, although it approaches significance for F2. Since all formant frequencies move in exactly the same direction, however, it may well be the case that the overall effect is perceptually salient.

It was felt that it would be useful to plot these data using a frequency scale which reflects the frequency resolution of the auditory system. The ERB scale was chosen and the following equation from Glasberg and Moore (1990) was used to convert Hz to ERBs:

$$ERBs = 21.4 \log_{10}(4.37F + 1)$$

where F is frequency in Hz. Each ERB corresponds to a distance of about 0.89mm on the basilar membrane. The ERB scale is essentially equivalent to the Bark scale (Zwicker and Terhardt 1980); both reflect critical bandwidths (Sharf 1970). The scales differ primarily in the way they represent frequencies below about 500Hz and, since the data here are above this frequency, the choice of scale was not considered important.

Figure 5.2 shows the data from Figure 5.1 replotted on an ERB scale. Interestingly, the variation in F2, F3 and F4 now appears to be identical. This figure suggests that the
formant frequency variation even in the higher formants will be perceptually significant. Furthermore, the pattern of variation is so consistent across the three formant frequencies that the combined effect of these changes has the potential to be perceptually very salient.

An impression can be gained of the likely perceptual salience of the formant frequency variation after consonant clusters, by a comparison with the formant frequency modifications made in the speech synthesis experiment in Chapter 3. Table 5.3 shows the range of formant frequency modifications made to F2 and F3 in the synthesis experiment and also shows the range of variation in F2, F3 and F4 frequencies found in the current experiment.

The synthesis experiment in Chapter 3 showed that modifications to F2 and F3 frequencies of 110–180 and 60–165Hz respectively can affect the intelligibility of synthesised words. It seems likely, therefore, that variation in formant frequencies of 50–160 and 50–240Hz for F2 and F3 respectively after a variety of syllable onsets will also be perceptually salient. F4 frequencies were not modified in the synthesis experiment, so a direct comparison is not possible, but it seems likely that variation of 70–260Hz in this formant frequency will also be perceptually salient. If this kind of context-induced variation is incorporated in rule-generated synthetic speech it should improve both its intelligibility and naturalness.
Table 5.3: Change in formant frequencies in synthesis experiment (Chapter 3) and in natural speech (cluster experiment). For the synthesis experiment the figures represent the range of modifications made to F2 and F3 frequencies in the edited forms of the speech stimuli. No modifications were made to F4 frequency in that experiment. For the natural speech the figures represent the range of formant frequency variation found for F2, F3 and F4 after various consonant clusters.

<table>
<thead>
<tr>
<th></th>
<th>ΔHz Synth.</th>
<th>ΔHz Nat.</th>
<th>ΔERBs Synth.</th>
<th>ΔERBs Nat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>110–180</td>
<td>50–160</td>
<td>57.4–62.0</td>
<td>50.1–60.9</td>
</tr>
<tr>
<td>F3</td>
<td>60–165</td>
<td>50–240</td>
<td>51.8–61.2</td>
<td>50.1–64.7</td>
</tr>
<tr>
<td>F4</td>
<td>–</td>
<td>70–260</td>
<td>–</td>
<td>53.2–65.4</td>
</tr>
</tbody>
</table>

5.6.2 Durational properties of vowels after a variety of syllable onsets

Perhaps the most notable feature of the pattern of formant frequency variation in Figures 5.1 and 5.2 is that the more segments there are in the syllable onset, the lower the formant frequencies at the midpoint of the following vowel. Within the r-onsets we find approximately the pattern /r/ > /Cr/ > /CCr/. Similarly, vowels after singleton /l/ have higher formant frequencies than after /kl/ or /gl/. It was thought that perhaps, as more elements were added to the syllable onset, the vowel might become shorter, in order to maintain an approximately equal overall syllable duration (cf. Klatt 1973, van Santen 1992a).

Figure 5.3 shows average vowel duration after each of the syllable onsets. The pattern of variation in vowel durations is remarkably similar to that found for the formant frequency data in Figures 5.1 and 5.2. Vowels are longest after singleton /r/ or /l/ and are progressively shorter, the more consonants that are included in the syllable onset. A statistical analysis was done using an identical repeated measures ANOVA design to that used for the formant frequency data. This showed a significant effect of syllable onset on the duration of the following vowel ($F(6,12)=75.58$, $p < 0.0001$). Planned comparisons between different syllable onsets’ influence on vowel durations are given in Table 5.4. In contrast to the formant frequency data, velar+r and alveolar+r onsets do not pattern together in terms of their impact on vowel duration; vowels are shorter after /tr/ and /dr/ than after /kr/ or /gr/.

Of course factors other than number of constituents in the syllable onset may also
Figure 5.3: Vowel duration after various syllable onsets, are averaged across vowels, speakers and repetitions.

<table>
<thead>
<tr>
<th>vowel durations</th>
<th>Δms.</th>
<th>F(6,12)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>/r/−/velar+r/</td>
<td>+12</td>
<td>5.69</td>
<td>0.002</td>
</tr>
<tr>
<td>/velar+r/−/skr/</td>
<td>+28</td>
<td>84.75</td>
<td>0.0001</td>
</tr>
<tr>
<td>/alveolar+r/−/str/</td>
<td>+17</td>
<td>29.58</td>
<td>0.0002</td>
</tr>
<tr>
<td>/velar+r/−/alveolar+r/</td>
<td>+10</td>
<td>10.89</td>
<td>0.006</td>
</tr>
<tr>
<td>/skr/−/str/</td>
<td>−1</td>
<td>0.22</td>
<td>0.65</td>
</tr>
<tr>
<td>/l/−/kl/</td>
<td>+9</td>
<td>9.71</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Table 5.4: Planned comparisons for durations of vowels after various consonant clusters. The difference (in ms.) is calculated as indicated in the first column.
influence vowel duration, such as vowel quality, number of syllables in a particular word, number of phonemes in the coda. The sequences examined here were not always controlled for such factors, and so the durational data are analysed in a second way which focuses exclusively on items that are well-controlled. Table 5.5 shows the subset of words that were chosen. Each word is a monosyllable ending in /m/ and the analysis focuses solely on words that include /r/ in the onset. This choice of words ensures that any durational differences must be caused by the varying syllable onsets.

<table>
<thead>
<tr>
<th></th>
<th>/l/</th>
<th>/v/</th>
<th>/æ/</th>
</tr>
</thead>
<tbody>
<tr>
<td>/r/</td>
<td>ream</td>
<td>rim</td>
<td>ram</td>
</tr>
<tr>
<td>/velar+r/</td>
<td>cream</td>
<td>grim</td>
<td>gram</td>
</tr>
<tr>
<td>/skr/</td>
<td>scream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/alveolar+r/</td>
<td>dream</td>
<td>trim</td>
<td>tram</td>
</tr>
<tr>
<td>/str/</td>
<td>stream</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.5: Subset of words from cluster experiment, which differ only in the nature of their syllable onsets. All words are monosyllabic and end in /m/.

The durations of vowels from this subset of words are plotted in Figure 5.4. The pattern of variation is very similar to that for the r-onsets in Figure 5.3, with vowels being shorter the more constituents there are in the syllable onset. As before, the vowels after alveolar+r clusters are shorter than those after velar+r, but they are still slightly longer than vowels after /skr/ or /str/. A certain amount of care must be taken when interpreting the data in Figure 5.4, as vowels are not equally represented for each of the syllable onsets. The /skr/ and /str/ onset data, for instance, come exclusively from syllables with /i/ as the nucleus, since this is the only set which was perfectly controlled in terms of word length, syllable coda etc. Thus the observed difference between the /sCr/ onsets and /Cr/ onsets is probably less than if the short vowels /i/ and /æ/ were included in the /sCr/ word set.

5.6.3 Conclusions for vowel data

The duration data seem to go a long way toward explaining the pattern of formant frequency variation in the vowels. As more segments are added to the syllable onset, the syllable nucleus gets progressively shorter, allowing less time for the articulators to reach
their target positions. For /r/ the effect of articulatory undershoot is simple; F2, F3 and F4 have lower frequencies in the consonant than in any of the vowels and so, with less time for articulators to reach their targets, these formant frequencies will tend to be lower. In /l/ the picture is more complicated. F2 and F3 frequencies are generally lower in /l/ than in /i I E/, whilst they are at about the same frequency as in /æ/. So the overall lower F2 and F3 frequencies in vowels after /kl/ and /gl/ than after /l/ can also be explained in terms of articulatory undershoot; vowels are shorter after the consonant cluster than after singleton /l/ and there is less time for F2 and F3 to attain their target frequencies in the vowel. The frequency of F4 differs very little between /l/ and any of the adjacent vowels, and indeed if we look at the formant frequency data, F4 differs little between vowels in /l/ and /kl/ or /gl/ contexts (30Hz or 0.07ERBs).

So the lower formant frequencies in vowels after syllable onsets containing more segments might be explicable entirely in terms of articulatory undershoot; the more elements in the onset, the shorter the nucleus and the greater the articulatory undershoot. However, number of segments in the onset is not a perfect predictor of nucleus length, as vowels were significantly longer after alveolar+r than after velar+r (see Table 5.4). Furthermore, there may be changes in the articulation of /r/ and /l/ caused by the preceding consonants, which could also contribute to formant frequency variation in the vowels. This experiment was
primarily designed to explore spectral and durational variation in vowels after a variety of
syllable onsets, the following section describes a supplementary experiment, which examines
the articulatory characteristics of the consonants in the clusters.

5.7 Realization of consonants in clusters

The work reported in this section is on a much smaller scale than that in the main
part of the experiment. The aim is to get an indication of variation in the realization of
the consonants in the clusters examined here, and perhaps to provide a starting point for
further articulatory and acoustic studies. The main question was whether articulation of the
consonant clusters might differ in ways that could explain the pattern of spectral variation
described for the vowels in Section 5.6.1. I look in turn at the realization of /r/ alone and
in clusters, at velars and alveolars in /Cr/ and /sCr/ clusters, and at the realization of
/l/ alone and in velar+l clusters. Given the small scale of this part of the experiment, the
materials and procedure for the investigation of each consonant are discussed individually
in the following sections.

5.7.1 Realization of /r/ in consonant clusters

Ideally this experiment would have included an acoustic analysis of /r/ in the
various clusters. However, the very different realizations of /r/ when it is the sole onset
constituent, and when it is part of a cluster mean that in practice it is very hard to define
a place to measure formant frequencies in the consonant which is consistent between each
of the different onset structures. This is clearly demonstrated by the three spectrograms in
Figure 5.5. It is relatively straightforward to measure formant frequencies at the midpoint
of the /r/ where it occurs in a simple /a r i:/ sequence, as in 5.5(a); the midpoint of
the consonant is located at approximately 12ms, where the frequency of F2 is at its lowest.
Finding an equivalent location in which to measure formant frequencies is extremely difficult
where the /r/ occurs as part of a consonant cluster as in 5.5(b) and (c). This is most evident
where /r/ occurs after a voiceless obstruent as in 5.5(b), and there is a period of aspiration
at the start of the rhotic consonant. Although measurement of the formant frequencies is
possible in the aspiration phase, the bandwidths will be broader and so accuracy is reduced,
especially with the absence of harmonic structure. These problems were great enough that
it was felt that variability due to measurement error might be as great or greater than
variability due to systematic context-dependent differences. By the time voicing begins in /kriː/ at about 18ms, and reliable formant frequency measurement is possible, the transition into the vowel is well underway and this cannot constitute a comparable measurement point to that suggested for 5.5(a).

Figure 5.5: Spectrograms of /riː/, /kriː/ and /skriː/ with some surrounding context.

Given these problems, it was decided to use electropalatography (EPG) to investigate the articulatory characteristics of the /r/ in the various consonant clusters. The Reading University electropalatograph (EPG3 Version 1.1) was used. In this system, the artificial palate has 62 electrodes in 8 rows; the row nearest the teeth has six, while all the
others have eight (see Figure 5.6). The EPG data for each frame are gathered over a 3ms interval (i.e. the time it takes to scan the palate electrodes) and the frames are updated every 10ms. The focus here will be on frames that represent the steady-state portion of the consonant of interest. A single subject (myself) was used for all the EPG data collection.

![Figure 5.6: Layout of palate used in electropalatographic data collection. Each dot indicates a single electrode.](image)

Materials and recording

The words used were all monosyllables ending in /p/ or /m/ (see Table 5.6), and so were similar, and sometimes identical, to those in the main part of the cluster experiment. Four repetitions of each word were recorded in a careful speech style, which as far as possible approximated that used in the main recording.

<table>
<thead>
<tr>
<th>Velars</th>
<th>Alveolars</th>
</tr>
</thead>
<tbody>
<tr>
<td>/r/</td>
<td>ream</td>
</tr>
<tr>
<td>/kr/</td>
<td>cream</td>
</tr>
<tr>
<td>/skr/</td>
<td>scream</td>
</tr>
</tbody>
</table>

Table 5.6: Words recorded to investigate tongue-palate contact in /r/ when it occurs alone and when it is in consonant clusters.

Analysis of the EPG data

The main focus here is on typical constriction patterns at the midpoint of each consonant, rather than the dynamics of tongue-contact patterns over long stretches of the speech signal. The following method was adopted for producing typical steady-state pictures for each context. For each repetition of a word, the steady-state portion near the middle of
the consonant of interest was identified. These steady-states consist of at least 4 identical tongue-palate contact frames (ca. 40ms), and more typically they were 6-9 frames long. Since there were four repetitions of each word, this resulted in four steady-state pictures for each consonant in the various cluster contexts. An average picture of tongue-palate contact was established, by defining as ‘on’ any electrode that was on in at least two of the four pictures. In most cases there was agreement in three or more of the repetitions as to whether an electrode was on or not. The resulting frames represent the typical steady-state constriction patterns.

Results of EPG analysis of /r/

Figure 5.7 shows typical steady-state tongue-palate contact patterns for /r/ alone and in /kr/ and /skr/, in /i:/ vowel contexts above, and /æ/ below. Predictably, the /r/s before /i:/ have greater tongue-palate contact, particularly in the palatal region. The clear constriction in the palatal region (rows 3–4) for /ri:/ and /skri:/ is less marked in /kri:/.

So, whilst the velar encourages less palatal contact in /r/, the preceding /s/ tends to pull the rhotic consonant forward again. In the /æ/ set the only evidence of a palatal constriction is for /r/ alone (row 4). In both vowel contexts the /r/s after velars have more contact in the velar region and, interestingly, this is most marked after /sk/. These data thus suggest that raising the front or front-dorsal part of the tongue for /s/ results in more contact during /r/ in both the palatal and velar regions.

Figure 5.7: Typical steady-state tongue-palate contact patterns for /r/ in different syllable onsets and two vowel contexts. Each panel is a composite of 4 repetitions of the token.
Figure 5.8 shows typical steady-state tongue-palate contact patterns for /r/ alone and in /tr/ and /str/, in the context of /i/ above and /æ/ below. There is again greater contact before /i/ than /æ/ and in /tr/ and /str/ there is slightly greater contact in both the palatal and velar regions.

In summary, when /r/ is preceded by initial /k/ it has a slightly backed articulation and less contact in the palatal region (see Figure 5.7). After initial /t/ the /r/ is slightly fronted (see Figure 5.8). However, when either stop is preceded by an /s/, there may be even more palatal contact, often extending further forward than for /r/ alone, and there is greater contact in the velar region. It is not clear whether these different articulations can explain the progressively lower F2, F3 and F4 frequencies in vowels after /r/, /Cr/ and /sCr/. The backing of /r/ after velars may result in a longer front cavity and thus lower F2 and possibly lower F3 frequencies. But it is harder to relate the higher overall tongue-body position in /skr/ and /str/ to the lower F2, F3 and F4 frequencies found in vowels after these clusters.

EPG data are of course inherently limited, in that they only offer a picture of tongue-palate contact patterns and it is possible that there are changes in tongue-body configuration which are not picked up in the contact patterns, but which affect the acoustic realization of the following vowels. More detailed articulatory work, using magnetic resonance imaging or other techniques might shed further light on articulatory variation in these consonants, for instance, it is possible that this subject produces /sCr/ clusters with
greater lip-rounding than the /Cr/ or /r/ syllable onsets, and this would certainly cause F2 and F3 to be lower in frequency.

5.7.2 Realization of alveolars and velars in /Cr/ and /sCr/ sequences

Using the same recordings and methodology as in the EPG analysis of /r/ (Section 5.7.1), patterns of tongue-palate contact are reported for alveolars and velars in /Cr/ and /sCr/ clusters. Figure 5.9 shows typical steady-state tongue-contact patterns for alveolar closures in /tr/ and /str/ clusters, in /ɪ/ vowel contexts above and /æ/ below. The closure for /t/ is perhaps slightly less complete in the /str/ clusters, with less contact in row 2 on the palate, but there seems to be nothing here which is likely to influence the realization of following vowels.

Figure 5.10 shows typical steady-state tongue-palate contact patterns for /k/ in /kr/ and /skr/ clusters, where the following vowel is either /i:/ or /æ/. The tongue-palate contact for the velars after /s/ changed substantially during the velar closure, and so two pictures are given in these cases, one from the start of the velar closure (Figures 5.10(b) and (e)) and one from near the end (Figures 5.10(c) and (f)). Although the tongue-contact patterns change over the course of the stop closure, there were still periods of relatively little change, and both pictures represent at least 4 frames where there was no change in contact pattern.

Figure 5.9: Typical steady-state tongue-palate contact patterns for /t/ in different syllable onsets and two vowel contexts. Each panel is a composite of 4 repetitions of the token.
Unlike /r/ (Figure 5.7) the velars are virtually identical between the two vowel contexts. Velars are well-known to be sensitive to following vowel context in terms of their place of articulation, and were more fronted in /kɪn/ than /kæn/ as produced by this speaker. So it can be assumed that the intervening rhotic completely blocks any such influence in /krV/ clusters. Predictably, the start of the velars in /skr/ have considerable contact in the palatal region (see 5.10(b) and (e)). However, towards the middle and certainly by the end of the velar consonants in /skr/ the patterns of tongue-palate contact are very similar to those in /kr/. There are slightly fewer electrodes activated in rows 7 and 8 in /skr/ compared to /kr/. This presumably reflects a more backed constriction location in /skr/, lying behind the region covered by the artificial palate.

Materials and measurements for acoustic analysis of velars

To further assess whether closure location differs in the velars in /kr/ and /skr/ clusters, an acoustic analysis is undertaken. Stevens (1998) states that the frequency of F2 at a velar burst is a good indicator of the frontness or backness of the constriction location, in that the frequency of F2 is inversely related to the length of the front cavity. When the front cavity is shortened, as for a more fronted velar stop, the frequency of F2 at burst
rises. The following section describes F2 frequency at burst release in a variety of velars and assesses possible variations in constriction location in the different clusters. Since the acoustic analysis tools in the EPG3 system are very basic, a separate recording was made and the acoustic work is done using xwaves on a Silicon Graphics workstation (sample rate 16kHz). Three repetitions of each word were recorded by the experimenter. An 18-pole autocorrelation lpc spectrum with a 25ms Hanning window was made, centred on the burst of each velar and the frequency of F2 was measured.

Frequency of F2 at velar burst

It is well-known that the constriction for velars in English and many other languages occurs in a more anterior position when the consonant is followed by a front vowel. This fact is used here to test the reliability of F2 as a front-back indicator. Minimal pairs were recorded, where the velar is followed by a front or back vowel. The top half of Table 5.7 gives the average frequency of F2 at velar burst in each of these test words. As predicted, the velar before the back vowel in *coop* has a much lower F2 frequency at the burst than before the front vowel in *keep* (Δ629Hz). There is a much smaller difference where there is a rhotic consonant between the velar and the vowel; F2 frequency at the burst for the /k/ is 49Hz lower in *croup* than in *creep*. The intervening /r/ causes F2 frequency lowering, and this probably explains why the vowels themselves have rather less influence on the frequency of F2 at velar release.

<table>
<thead>
<tr>
<th>front V</th>
<th>F2</th>
<th>back V</th>
<th>F2</th>
<th>ΔHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>keep</td>
<td>2568</td>
<td>coop</td>
<td>1939</td>
<td>+629</td>
</tr>
<tr>
<td>creep</td>
<td>1231</td>
<td>croup</td>
<td>1182</td>
<td>+49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/kr/ F2</th>
<th>/skr/ F3</th>
<th>ΔHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>cream</td>
<td>1245</td>
<td>+142</td>
</tr>
<tr>
<td>cram</td>
<td>1272</td>
<td>+158</td>
</tr>
</tbody>
</table>

Table 5.7: Frequency in Hz of F2 at velar burst averaged across 3 repetitions from a single speaker. Contexts are front vs. back vowels, and /kr/ vs. /skr/ syllable onsets. The difference (Δ) is calculated as column 2 − column 4.

Having confirmed that F2 frequency at a velar burst is a reliable indicator of the
frontness or backness of the articulation for this speaker, the frequency of F2 was measured at the velar burst in /kr/ and /skr/ (see lower half of Table 5.7). For each of the minimal pairs, the frequency of F2 at the velar burst is lower in /skr/ than in /kr/, by 142Hz and 158Hz respectively for *scream vs. cream* and *scram vs. scram*.

These data suggest that velars are more backed in /skr/ clusters than in /kr/ clusters. However, it is also possible that the acoustic data reflect some kind of tongue body configuration or lip-rounding differences which are not picked up by the rather limited articulatory descriptions afforded by EPG analysis. The acoustic data strongly suggest that velars are not identical in /kr/ and /skr/ clusters. Most importantly, the direction of F2 shift between these contexts is identical to that found in the vowels after these syllable onsets; F2 frequency is lower in /skrV/ than in /krV/ for both vowels and velars. Whatever the cause of this formant frequency lowering, the fact that it is apparent over several segments means that it is very likely to be perceptually salient and thus may be worth modelling in synthetic speech.

5.7.3 Realization of /l/ in consonant clusters

The final consonant to be investigated using EPG techniques was /l/. Again a small amount of data was collected by the experimenter, with /l/ being included as a singleton onset constituent, and in a velar+l cluster in two vowel contexts (see Table 5.8). The method of analysis of the EPG data was the same as for /r/, described in Section 5.7.1.

<table>
<thead>
<tr>
<th>lib</th>
<th>glib</th>
</tr>
</thead>
<tbody>
<tr>
<td>lamb</td>
<td>glam</td>
</tr>
</tbody>
</table>

Table 5.8: Words recorded for EPG analysis of /l/

Figure 5.11 shows EPG patterns for /l/. The left-hand panels show tongue-contact patterns for /l/ where it is the sole syllable onset constituent, the middle panels show patterns early in /l/ after the velar stop /g/ and the right-hand panels show patterns typical of the end of an /l/ after /g/. The middle and right panels show how much the articulation changes during the liquid; immediately after velar release there is substantial tongue contact in the velar region, but this is no longer so evident towards the end of the
liquid. If the velar influence spread throughout the /l/ into the vowel, then vowels after /gl/ may be more backed than those after /l/ alone. Section 5.6.1 described how vowels have slightly lower F2 frequencies after velar+l than after /l/ alone, and this would accord with suggestions of tongue backing in such vowels (cf. Stevens 1998). The lowering of F3 and F4 might also be accounted for by tongue-backing in the vowels, but a more detailed articulatory-acoustic study is needed to fully understand the patterns of variation described here.

Figure 5.11: Palatal contact in /l/, alone and in /gl/ clusters. Two following vowel contexts are shown in each case, as indicated below each figure. For /l/ in /gl/ clusters the tongue-contact pattern is recorded at two points; one near the start of the liquid, immediately after velar release, and the other near the end of the liquid. Each panel is the composite of 4 repetitions of the token.

5.7.4 Summary of EPG and acoustic data for consonants

Predictably, rhotic consonants were more backed after /k/ and slightly fronted after /t/. In /sCr/ clusters the /r/ had greater contact in both the velar and alveopalatal regions, suggesting a higher overall tongue-body position.

The velars in /skr/ clusters showed evidence of greater contact in the palatal region at the start of velar closure, but this disappeared by the end of the stop. The EPG data suggested that the velar closure in /skr/ was more backed (beyond the edge of the artificial palate) than in /kr/ and this was supported by an acoustic analysis showing that F2 at
velar burst is lower in /skr/ than in /kr/. The frequency of F2 at velar burst is known to be inversely related to the length of the front cavity at stop release, and so lower F2 suggests a more backed articulation. It was also acknowledged, however, that F2 lowering could be caused by lip-rounding, or changes in tongue-body configuration not reflected in the EPG data and further articulatory and acoustic work is needed to explore this. Whatever the cause of the F2 lowering, it could well contribute to the lower F2 frequency in vowels after /skr/ compared with vowels after /kr/.

Finally, /l/ showed greater velar contact after /g/, and this was evident throughout the liquid and so thought likely to have an influence on following vowels. If the vowels after /gl/ are more backed than after /l/ they are likely to have lower F2 frequency. This is precisely the pattern found in Section 5.6.1, although a durational explanation is also possible for the pattern of spectral variation found after l-onsets.

5.8 Summary and conclusions

This chapter described spectral and temporal variation in vowels after a variety of syllable onsets which included singleton /r/ and /l/ and consonant clusters involving liquids. A consistent relationship between the temporal and spectral characteristics of the vowels was found. In general, the more constituents there were in the syllable onset, the shorter the following vowel, and the more it seemed prone to articulatory undershoot, as reflected in lower F2, F3 and F4 frequencies for vowels after r-onsets and lower F2 for vowels after l-onsets.

The degree and direction of formant frequency variation in F2, F3 and F4 was very similar between the different syllable onsets, and this pattern was neatest when plotted on an ERB scale, which more accurately reflects the signal’s properties after auditory processing. The absolute differences between formant frequencies in the different cluster contexts were large (between 50–260Hz) and the perceptual work in Chapter 3 strongly suggests that formant frequency variation on this scale and for these formant frequencies will be perceptually salient.

A great deal of work is currently being done to try and improve the rhythmic quality of synthetic speech (cf. Edgington 1998, Werner and Keller 1994, van Santen 1992b). One area which has not been particularly well-researched is the effect of consonant clusters on following vowel durations (van Santen 1992a), and this chapter provides some preliminary
data in this area. The data confirm the well-known relationship between segment durations and their spectral properties (cf. Lindblom 1963). The results suggest that the benefits of getting the timing right in synthetic speech go beyond accurate temporal modelling. If segment durations are right, and if there is appropriate modelling of articulatory undershoot, then spectral variation which is related to segment duration may also naturally be captured, given an appropriate synthesis architecture.

This chapter also includes supplementary data exploring articulatory variation in the consonants in the various syllable onsets. Some of these data provide partial explanations for the patterns of formant frequency variation found in vowels. For instance, EPG data suggested that the velar closure in /skr/ was more backed than in /kr/ and this was also reflected in lower F2 at velar burst in /skr/. This might explain the lower F2 in vowels following this cluster compared with vowels after /kr/ or /r/ onsets. However, the consonantal data provided at best incomplete explanations for the spectral variation in the vowels, and it was concluded that the most important factor in determining formant frequencies in the vowels was their duration.

This chapter explored links between context-induced durational variation in vowels and their spectral characteristics. The rhythmic patterns described were at the level of the individual syllable, where it seems that the addition of segments to a syllable onset can result in a shortening of the tautosyllabic nucleus. The next chapter explores higher-level influences on vowel durations, investigating the role of metrical structure in determining the length and spectral characteristics of different vowels.
Chapter 6

Further metrical influences on liquid coarticulation

6.1 Introduction

The production experiments described so far focus primarily on segmental factors that influence coarticulatory behaviour, with some exploration of the impact of stress on susceptibility to coarticulatory influence. This chapter examines interactions between suprasegmental structure and coarticulation.

The separation of the suprasegmental and segmental tiers has long been recognized to be overly simplistic, and interactions between the two are well-documented. Lehiste (1970) highlights systematic segmental influences on suprasegmental features; for instance, high vowels tend to be shorter, have lower intensity and higher F_0 than low vowels. Conversely, suprasegmental features commonly affect the realization of phonetic segments; for instance, unstressed syllables in English tend to have more centralized vowels than their stressed counterparts (cf. discussion in de Jong, Beckman, and Edwards 1993).

Although researchers in phonetics do not generally consider the division between segmental and suprasegmental structure to be a reflection of reality, in practice they are often treated separately in both theoretical work and applications such as the rule-systems for most speech synthesizers. Formant synthesizers interpolate between target frequencies for successive acoustic segments, whilst synthesis based on concatenative techniques depends on a choice of segment (diphone, demisyllable etc.) and basic manipulation of segment
CHAPTER 6. METRICAL INFLUENCES ON LIQUID COARTICULATION

...timing, F∅ and so forth. Indeed unit selection is a major concern in concatenative synthesis research, as demonstrated by the large number of papers devoted to this issue at the recent ESCA/COCOSDA synthesis workshop in Australia (Edgington 1998). By exploring interactions between metrical structure and segmentally-governed contextual variability this chapter highlights some problems for synthesis systems which cannot easily integrate segmental and suprasegmental information.

A great deal of work has been done relating stress to the timing and acoustic realization of segments. Some work has also been done on the effect of prosodic structure on the temporal realization of segments. English is described as having a stress-based rhythm. That is, the intervals between stressed syllables tend to sound approximately equal (cf. Abercrombie 1964, Huggins 1975, Laver 1994). Although this auditory impression is fairly robust, it is often difficult to find evidence of such regular timing in the acoustic signal (Lehiste 1977, Beckman 1992). However, work by Ogden and Local (1992, 1996) suggests there is at least a tendency for syllables to become more compressed, as the foot in which they are contained becomes longer, although their work shows it to be a complex phenomenon, contingent on additional factors such as syllable weight.

In one part of the present experiment stressed and unstressed CV sequences are incorporated in feet of different lengths and their durational and spectral properties are examined. Of the syllables examined in this part of the experiment, 71% were light, and all the heavy syllables are accounted for by the /i:/ nucleus tokens. Since syllable weight and vowel quality are relatively well-controlled, it is assumed that it is the number of syllables in the foot which will be the prime determinant of syllable durations. Further experiments should vary the phonological weight of syllables whilst controlling vowel-quality to explore the impact of this factor on temporal and spectral characteristics of the syllable, and possible interactions with metrical structure when foot-length is also varied. But this was beyond the scope of the present experiment, which sought to establish some basic principles governing the relationship between temporal and spectral variation in speech.

The second part of this experiment examines the influence of a syllable’s position in the foot on its coarticulatory behaviour. Since stressed syllables coarticulate less than unstressed syllables, it seems clear that the first (stressed) syllable in the foot will be less susceptible to coarticulatory influence than the following unstressed syllables. But there is also some evidence to suggest that the unstressed syllables in a foot should not be considered identical and this is explored further in this chapter. Rodgers (1998) finds that vowels in
3rd syllable position in a 4-syllable foot devoice less than the vowels in 2nd or 4th position. Given that devoicing is a connected speech process closely related to stress, this finding suggests that the 3 unstressed syllables in a 4-syllable foot are not identical, but that the middle one carries a stronger beat. This accords with work by Allen and Hawkins (1978) suggesting that the natural metric form of children’s words is trochaic. Similarly van Santen (1992a) suggests that speakers may tend to put what he calls a “non-zero” level of stress on every 2nd or 3rd syllable. Experimental data is presented by Nooteboom (1991) which shows that within-word sequences of unstressed syllables in Dutch follow a pattern of rhythmic alternation: short, long, short etc. The second part of the experiment in this chapter investigates whether this apparent pattern of unequal stress beats results in different spectral characteristics for the three ‘unstressed’ syllables in a four syllable foot.

6.2 Research Questions

In each foot examined I am interested in the duration and spectral characteristics of a single CV sequence. Given the rather unpredictable behaviour of vowels after /l/ in the first production study (Chapter 2) and the perceptual experiment (Chapter 3), no explicit predictions are made about the behaviour of /lV/ sequences in the different structures. /h/ is not included, partly because it was impossible to find real-word contexts which were comparable to those for /l/ and /r/ in the contexts required. It was also felt that previous experiments had established clear differences between vowels in /r/ and /l/ contexts and vowels in /h/ contexts and that these did not need further exploration. What is of interest here is to explore differences between /rV/ or /lV/ sequences when they are incorporated in different metrical structures.

6.2.1 Hypotheses relating to foot-length

Assuming that there is at least a tendency towards isochrony of stressed syllables in English, it is predicted that:

1. The more syllables there are in a foot, the greater the compression of each syllable will be.

2. Unstressed syllables will compress more than stressed ones (cf. Laver 1994).
If the hypotheses about syllable compression are substantiated, it is predicted that this will have the following consequences for the spectral characteristics of the syllables involved:

3. The more syllables there are in a foot the greater their susceptibility to coarticulatory influence. It is assumed that shorter syllable durations will mean that articulators are less likely to attain their targets and thus, for instance, r-induced formant frequency lowering will be greater. This is supported by Laver’s (1994) descriptions of syllable reorganisation and vowel reduction in compressed vowels.

4. The effects of foot-length on formant frequencies will be greatest for unstressed syllables, as these compress most.

6.2.2 Hypotheses relating to syllable’s position in the foot

1. Since stressed syllables are less susceptible to coarticulatory influence than unstressed syllables, the first syllable in the foot will be least susceptible to coarticulatory influence. Vowels in /rV/ syllables will have highest formant frequencies when in foot-initial position.

2. If it is true that the 3rd syllable in a 4-syllable foot is ‘stronger’ than the 2nd and 4th syllables, then this syllable should be less susceptible to coarticulatory influence than the other unstressed syllables. For instance, vowels in /rV/ syllables which occur 3rd in the foot will be less prone to r-induced formant frequency lowering than when they are 2nd or 4th in the foot.

6.3 Materials

6.3.1 Exploring foot-length and syllable compression

In order to explore the impact of foot-length on syllable durations and spectral variation, foot-length is varied whilst the position of the syllable of interest in the foot is kept constant. Feet are 2, 3, 4 or 5 syllables long and the syllable of interest is either stressed or unstressed. Stressed syllables are foot-initial, and the unstressed syllables here are always second in the foot. As in previous experiments, all stressed syllables are strong accented syllables and the unstressed syllables are weak. Given this binary stress distinction, some vowels occur only in stressed or unstressed syllables (see Figure 6.1).
Table 6.1 gives the sentences containing stressed syllables in feet of different lengths and Table 6.2 gives the equivalent sentences, in which unstressed syllables are incorporated as the second syllable in feet of different lengths.

6.3.2 Exploring the impact of syllable position in the foot

In this part of the experiment foot-length is kept constant at 4 syllables and the position of the syllable of interest is varied from first to last in the foot. As in the foot-length part of the experiment, the focus is on the spread of r- and l-colouring to adjacent vowels, which are /i:/ and /æ/ or /a/ depending on whether the syllable is stressed or unstressed. The sentences for this experiment are given in Table 6.3.

Designing natural sounding and phonetically controlled sentences which varied the position in the foot of the /rV/ and /lV/ syllables was difficult. The CV sequence of interest is followed immediately by /p/, /m/ or /f/, since it was predicted that these labial consonants would not inhibit lingual coarticulatory effects. Where possible the CV sequence is preceded by a schwa, but in some cases other vowel or consonant contexts were necessary in order to use real words. In four of the sentences this resulted in the occurrence of syllabic /l/; It’s metal if . . . , It’s a hospital if . . . , If you dismantle a . . . , and The cannibal appeared . . . Syllabic /l/ are likely to be more velarized than onset /l/, and this may have an effect on the following vowel. Where the /l/ are preceded by voiceless consonants, devoicing of the /l/ is also expected, but this is unlikely to have a large impact on formant frequencies in the vowels.

6.4 Recording

Sentences for this experiment were recorded along with those for the experiments in Chapters 4 and 5. Full details of the recording, subjects and the sentences are given in
Table 6.1: Sentences: Influence of foot-length on spread of resonance effects.

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Foot-length</th>
<th>Sentence</th>
</tr>
</thead>
</table>
| /i:/ | 2σ | The 'reaper 'came with the threshing machine.
The 'lever 'came with the threshing machine. |
| | 3σ | The 'reaper can 'move in both directions.
The 'lever can 'move in both directions. |
| | 4σ | The 'reaper can 'ac'celerate the speed of the machine.
The 'lever can 'ac'celerate the speed of the machine. |
| | 5σ | The 'reaper can 'disen'gage this part of the machine.
The 'lever can disen'gage this part of the machine. |
| /ɛ/ | 2σ | The 'river 'forms an arc in the valley.
The 'liver 'forms the basis of the dish. |
| | 3σ | The 'river for 'snakes and eels is the Wye.
The 'liver for 'steak and kidney pie is the best. |
| | 4σ | The 'river for the 'best fishing is the Dee.
The 'liver for the 'best paté comes from pigs. |
| | 5σ | The 'river for the 'ped'antic angler is the Severn.
The 'liver for the po'tato pie is in the fridge. |
| /æ/ | 2σ | Is the 'ref a 'newcomer to the game?
Is e'leven 'usually filed with ten? |
| | 3σ | The 'revenue 'reeks of criminality.
The e'leven En'rekas are enough! |
| | 4σ | Is the 'revenue al'lowed to grow that fast?
Is the e'leven you all'owed for enough? |
| | 5σ | Is the 'revenue in ad'vertisements that high?
Are these the e'leven you inad'visely allowed to leave? |
| | 3σ | Did Arthur 'ram a 'kayak in the banks of the Cam?
Did the 'lamb an'noy the sheepdog? |
| | 4σ | Did Arthur 'ram a 'ca'noe in the banks of the Cam?
Lucia di 'Lammermoor 'can't be performed. |
| | 5σ | Are the 'ramekins of 'strawberries out on the table?
Lucia di 'Lammermoor is 'wonderfully theatrical. |
| | 5σ | Are the 'ramekins of the 'strawberries out on the table?
Lucia di 'Lammermoor is an 'opera by Donizetti. |

Table 6.1: Sentences: Influence of foot-length on spread of resonance effects. Here the syllable of interest is always stressed, i.e. it is foot-initial. The foot containing the syllable of interest is underlined in the orthographic transcription. Feet vary in length from 2 to 5 syllables. See Figure 6.1(a).
Chapter 6. Metric Influences on Liquid Coarticulation

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Foot-length</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i:/</td>
<td>2σ</td>
<td>'Sherri' withered away gradually.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'Shelley' withered away gradually.</td>
</tr>
<tr>
<td></td>
<td>3σ</td>
<td>They drank 'sherry with' biscuits and cheese.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>They rank 'Shelley with 'Byron and Keats.</td>
</tr>
<tr>
<td></td>
<td>4σ</td>
<td>They drank 'sherry with a 'couple of friends.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>They rank 'Shelley with a 'couple of other poets.</td>
</tr>
<tr>
<td></td>
<td>5σ</td>
<td>They drank 'sherry with an ex'citing flavour.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>They rank 'Shelley with an ex'citing Italian poet.</td>
</tr>
<tr>
<td>/a/</td>
<td>2σ</td>
<td>The 'sheriff' instigated an inquiry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>He told her to 'sell if 'instant cash is required.</td>
</tr>
<tr>
<td></td>
<td>3σ</td>
<td>The 'sheriff is 'talking to the mayor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can 'sell if its 'better for you and your wife.</td>
</tr>
<tr>
<td></td>
<td>4σ</td>
<td>The 'sheriff is a 'totally fanatical gardener.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can 'sell if it's a 'greed before June the fifth.</td>
</tr>
<tr>
<td></td>
<td>5σ</td>
<td>The 'sheriff is an im'possible man.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can 'sell if it's an in'credible price.</td>
</tr>
<tr>
<td>/a/</td>
<td>2σ</td>
<td>His 'error 'wasn’t as bad as he thought.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>His 'cellar 'wasn’t as bad as he thought.</td>
</tr>
<tr>
<td></td>
<td>3σ</td>
<td>His 'error was 'nothing to worry about.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>His 'cellar was 'nothing to boast about.</td>
</tr>
<tr>
<td></td>
<td>4σ</td>
<td>His 'error was a 'tiny spelling mistake.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>His 'cellar was a 'tiny collection of clarets.</td>
</tr>
<tr>
<td></td>
<td>5σ</td>
<td>His 'error was a mis'take on page 30.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>His 'cellar was a mis'take from a financial perspective.</td>
</tr>
</tbody>
</table>

Table 6.2: Sentences: Influence of foot-length on spread of resonance effects. Here the syllable of interest is unstressed and second in the foot. The foot containing this syllable is underlined in the orthographic transcription. Feet vary in length from 2 to 5 syllables. See Figure 6.1(b).
Table 6.3: Sentences: Influence of position of syllable in the foot on its coarticulatory behaviour. The syllable of interest is underlined in the orthography.

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Position in foot</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i/</td>
<td>1st</td>
<td>The ‘reaper took a ‘look at the corn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The ‘leaper took a ‘run at the fence.</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>Then ‘Terry put a ‘clock away.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The ‘telly put a ‘dampener on events.</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>The ‘buttery pot’atoes were delicious.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utterly ‘Butterly pot’atoes taste best.</td>
</tr>
<tr>
<td></td>
<td>4th</td>
<td>The ‘Dromedary’ publishing house is in Newcastle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>He said “digitally” perfectly first time.</td>
</tr>
<tr>
<td>/s/</td>
<td>1st</td>
<td>The ‘rim of the ban’dana is red.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The ‘liver for the ‘pie is in the fridge.</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>Such ‘merriment an’noys him.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can ‘tell if a pe’culiar one arrives.</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>The ‘interim a’greement is as follows.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It’s ‘metal if a ‘pin sticks to it.</td>
</tr>
<tr>
<td></td>
<td>4th</td>
<td>‘Agatha rem’embered where it was.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It’s a ‘hospital if ‘people work there.</td>
</tr>
<tr>
<td>/a/</td>
<td>1st</td>
<td>How ‘trumpy can a ‘person be?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How ‘lumpy can a ‘pillow be?</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>They say ‘therapy can ‘help in some cases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>They say ‘Sellafield is ‘safer.</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>If you en’counter a pi’ano player, tell me.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If you dis’mantle a pi’ano you can’t play it.</td>
</tr>
<tr>
<td></td>
<td>4th</td>
<td>The ‘cucumber a’ppeared to be mouldy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The ‘cannibal a’ppeared to be moody.</td>
</tr>
</tbody>
</table>
Chapter 4, Section 4.3. Some of the sentences for this experiment were rather unnatural, and subjects required a certain amount of practice in order to read them fluently. Often there were perfectly possible readings of sentences which were not the rendition desired here. For instance *He said “digitally” perfectly first time* often elicited a substantial pause before and after the word in quotes, when the desired reading does not contain pauses. The word *digitally* in this same sentence was often produced with 3 syllables [dɪdʒɪtəli], rather than the desired 4 syllables [dɪdʒɪtəli]. Where subjects misread a sentence for the purposes of this experiment, a repetition was requested at the end of the recording session.

6.5 Measurements and Analysis

The frequencies of F2, F3 and F4 were measured at the midpoint of each vowel of interest. Midpoints were determined by hand after determining vowel onset and offset as described in Chapter 2, Section 2.5.

In the foot-length part of the experiment the duration of the vowel in each syllable of interest was measured, again using the definitions for vowel onset and offset described in Chapter 2. It was decided to measure nucleus duration rather than syllable duration, partly because it is the vowel in which the spectral measurements are made, and so the primary interest is in the syllable nucleus. It was also felt that the duration of the nucleus would give an accurate reflection of syllable compression since it is predominantly vowels rather than consonants that are affected by temporal adjustments typical of rapid speech or greater foot-length (*cf.* Fowler 1981b). Listeners are also more sensitive to durational changes in vowels than in consonants (Carlson and Granström 1975), so it makes sense to focus attention on durational changes in the syllable nuclei.

A repeated measures ANOVA was performed for each formant frequency separately, and for the vowel-duration data.

6.6 Results and Discussion

6.6.1 The effect of foot-length on vowel durations

Figure 6.2 shows the duration of stressed and unstressed syllable nuclei in feet of different lengths. As predicted, both stressed and unstressed vowels are shorter in longer feet (*F*(3,6)=66.346, \(p < 0.0001 \), *F*(3,6)=21.155, \(p < 0.0001 \) respectively). Contrary to
expectation, compression does not increase with foot-length; the 3-, 4- and 5-syllable feet pattern together.

Also contrary to expectation is the lack of any difference in degree of syllable compression between the stressed and unstressed syllables; they compress by about the same absolute amount (ca 10ms) between the 2-syllable feet and the 3-, 4- and 5-syllable feet. When expressed as a proportion of syllable length, there is a small difference in compression between the two stress conditions: 14% for the unstressed syllables and 10% for the stressed syllables. So in proportionate terms the stressed syllables compress slightly less than the unstressed syllables, as suggested, but perceptual testing would be required to detect if this difference is perceptually salient.

\[
\begin{array}{c|c|c|c}
\text{Syllable type} & \text{unstressed} & \text{stressed} \\
\hline
\text{duration of } \sigma - \text{nucleus (ms)} & 2-\sigma \text{ foot} & 3-\sigma \text{ foot} & 4-\sigma \text{ foot} & 5-\sigma \text{ foot} \\
\end{array}
\]

Figure 6.2: Duration of syllable nuclei in feet of different lengths.

6.6.2 The effect of foot-length on spectral properties of vowels

Interestingly, although syllable compression in feet of different lengths is identical for stressed and unstressed syllables, the impact of foot-length on formant frequencies is dependent on stress. I look in turn at the stressed and unstressed syllables. Table 6.4 gives the frequencies of F2, F3 and F4 in stressed syllables in feet of different lengths. Formant frequencies vary little across the different foot-lengths, and indeed statistical analysis shows that foot-length does not significantly affect formant frequencies in stressed syllables \(F(3,6)=0.14 \ p<0.93\), \(F(3,6)=0.196 \ p<0.90\), \(F(3,6)=3.87 \ p<0.07\), for F2, F3 and F4.
The difference in F4 frequency approaches significance and Table 6.4 shows that there is some change in this formant frequency over the different foot-lengths. However, the change in formant frequency does not seem to correlate in any way with increasing foot-length. It was sometimes difficult to locate F4 in the spectra and so the variation here probably arises due to inaccuracies in the measurement of this formant frequency. Such small fluctuations in the frequency of F4 are also likely to be imperceptible.

<table>
<thead>
<tr>
<th>Foot-length</th>
<th>2-σ</th>
<th>3-σ</th>
<th>4-σ</th>
<th>5-σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>1895</td>
<td>1894</td>
<td>1894</td>
<td>1887</td>
</tr>
<tr>
<td>F3</td>
<td>2806</td>
<td>2795</td>
<td>2793</td>
<td>2796</td>
</tr>
<tr>
<td>F4</td>
<td>3836</td>
<td>3859</td>
<td>3893</td>
<td>3874</td>
</tr>
</tbody>
</table>

Table 6.4: F2, F3 and F4 frequencies in stressed vowels in feet of different lengths.

Turning to the unstressed syllables, we do find an impact of foot-length on the spectral characteristics of some syllable-nuclei. The /rV/ and /lV/ syllables are examined separately, as rather different patterns of formant frequency variation are apparent in each.

Figure 6.3 shows F2, F3 and F4 frequencies measured mid-vowel in /rV/ and /lV/ sequences in feet of different lengths. In the /rV/ syllables both F3 and F4 frequencies are lower in the 3-, 4- and 5-syllable feet than in the 2-syllable feet (F(3,6)=8.478, \(p < 0.05 \) and F(3,6)=36.537, \(p < 0.001 \)). As with the temporal data, the impact of foot-length on spectral characteristics is not incremental: the 3-, 4- and 5-syllable feet generally pattern together. It may seem in Figure 6.3 that F3 and F4 frequencies in vowels in /rV/ sequences in the 4-syllable feet are rather higher than in the 3- and 5-syllable feet. However, planned comparisons for the 4-syllable feet vs. 3- and 5-syllable feet show any such difference to be statistically insignificant (F(3,6)=2.12, \(p < 0.2 \), F(3,6)=1, \(p < 0.36 \), for F3 and F4 respectively).

In the /lV/ syllables F3 shows the most obvious impact of foot-length on formant frequency: it is lower in the 3-, 4- and 5-syllable feet than in the 2-syllable feet (F(3,6)=15.656, \(p < 0.01 \)). At first sight there appears to be relatively little variation in F2 frequency, but it is on average 41 Hz higher in the 2-syllable feet than in the 3-, 4- or 5-syllable feet (F(3,6)=16.48, \(p < 0.01 \)). F4 also varies somewhat in frequency with foot-
length, being higher in the 4-syllable foot than in any of the others (F(3,6) = 8.68, p < 0.03). It is unclear why this should be the case, but again difficulties in accurately measuring F4 may mean that this is simply an anomaly rather than a systematic effect.

Summary of spectral findings

Where foot-length has a significant impact on formant frequency, the tendency is for the formant to be lower in feet of 3 or more syllables. This is in accordance with an explanation based on the time it takes for articulators to achieve their targets. Articulatory undershoot was used to explain some of the patterns of formant frequency variation found in vowels after different consonant clusters in Chapter 5, and a similar explanation can be invoked here. Again, in order to predict the acoustic consequences of articulatory undershoot we have to compare formant frequencies in the consonants and in the vowels of interest.

Both F3 and F4 frequencies are lower in /r/ than in vowels, so where syllable nuclei are shorter and there is less time for articulators to reach their targets, both these formants tend to be lower than in longer syllables. This experiment shows that vowel durations are shorter in longer feet, and these shorter vowels show greater r-induced formant frequency lowering in F3 and F4. F2 is also lower in /r/ than in the vowels here and it is not clear why this formant frequency does not show any sign of undershoot.

F2 and F3 frequencies in /l/ are also slightly lower than in /i; a/, and both are
at approximately the same frequency as in /æ/. Where the syllable nuclei are shorter, there is less time for formant frequencies to attain their targets, and the average pattern across such vowels is for F2 and F3 to be at a lower frequency.

The results here do not suggest that there is something special happening in coarticulatory terms in the syllables which have a shorter duration. The patterns of formant frequency variation in vowels after both /l/ and /r/ can be explained with reference to the temporal properties of the syllable; shorter syllable durations give less time for the articulators to reach the configuration they attain in longer syllables.

An interesting feature of the results was the difference in behaviour between stressed and unstressed syllables. Figure 6.2 showed that stressed and unstressed syllables compress to an almost identical degree as foot-length is increased. And yet the spectral characteristics of stressed and unstressed syllables are not identical and so syllable compression doesn’t provide us with a complete explanation for these spectral differences. It seems that the stressed syllables are more resistant to coarticulatory influence than they are to temporal compression. Since the stressed syllables are on average 30ms longer than the unstressed syllables, it is possible that the articulators simply have more time to reach their targets in the stressed syllables even after they have undergone syllable compression.

Another explanation for the resistance of stressed syllables to coarticulatory influence is that stressed syllables are perceptually more important than unstressed syllables. It is well known that stressed syllables are more intelligible than unstressed syllables when excised from their original context (Lieberman 1963), and distortions in the speech signal are more likely to be noticed if they occur in stressed syllables (Cole and Jakimik 1980, Browman 1978). Lindblom (1990) proposes that speakers are very aware of listeners’ perceptual requirements and that they adapt their speech accordingly. He proposes that speakers aim for sufficient discriminability. If stressed syllables are perceptually more important, they need to be articulated more clearly in order to carry sufficient spectral information for the listener to successfully interpret the acoustic signal. This may account for the resistance of stressed syllables to formant frequency undershoot even after syllable compression.

Analysis of a subset of the data from this experiment seems to support this explanation, as formant transitions were generally steeper in stressed /rV/ tokens than in unstressed tokens. This accords with other research showing faster rate of articulator movement in stressed than unstressed syllables (cf. Ostry, Keller, and Parush (1983) and Ostry, Feltham, and Munhall (1984) on tongue and jaw movement). Pols and van Son (1993)
examine formant characteristics as a function of vowel duration in different speech rates and find absolutely no indication of duration dependent undershoot. Instead the speaker adapted his speaking style to the speaking rate in order to attain the same vowel midpoint formant frequencies. Although they find that stressed vowels were generally longer and less reduced than unstressed ones, Pols and van Son suggest that vowel duration alone cannot explain the differences, because there were instances where an unstressed and thus spectrally reduced syllable had a longer duration than a comparable stressed syllable (perhaps due to phrase-final lengthening).

Lindblom also suggests that articulatory undershoot is often language specific, or learnt, rather than being physiologically inevitable. The data presented here seem to support this; whilst physiology imposes certain constraints on the speech production process, there is a lot of room for variation within those constraints. Vowel-shortening can result in articulatory undershoot, but where clarity is important, as in stressed syllables, speakers simply move the articulators more rapidly. Moon and Lindblom (1994) find evidence of such variation at least for different speaking styles. They embedded English front vowels in /wVl/ sequences and made recordings of a range of speaking styles. They found that formant frequencies were systematically displaced in the direction of the frequencies of the adjacent consonants, and those displacements depended in a lawful manner on vowel duration. Interestingly for our purposes, this context and duration dependence was more limited for clear speech than for citation-form (more casual style) speech and the smaller formant shifts in the clear speech tended to be achieved by increases in the rate of formant frequency change.

Further experimental work to expand on the findings presented here should elicit stressed and unstressed vowels of a variety of different durations and from a range of speaking styles. Such data would help establish whether the patterns of spectral variation found here are indeed explicable in terms of the greater articulatory care taken over stressed syllables, or whether the lack of formant frequency undershoot with temporal compression of the stressed syllables is simply due to their overall longer durations when compared with the unstressed syllables.

In order to capture the kinds of durational and spectral variation described in this chapter, stress placement is a crucial factor. The stressed syllables can be used to determine foot-length, and thus the appropriate degree of syllable compression (cf. Ogden and Local 1992). Similarly the [+/- stress] marker can be used to determine degree of
formant target undershoot. This is described by Klatt (1979) who states that segmental stress is used to determine segment durations, F0 frequency, plosive aspiration duration and formant undershoot. What is not clear from this description is whether undershoot is a straightforward consequence of the shorter durations of unstressed syllables, or whether a different rate of change is specified for formant frequency transitions in stressed and unstressed syllables.

6.6.3 The effect of syllable position in the foot on coarticulation

The second part of this experiment on metrical structure investigates whether a syllable’s position in a four syllable foot affects its spectral properties. Figure 6.4 shows F2, F3 and F4 frequencies in syllables in the four different positions in the foot. The results are averaged across consonants and vowels, as similar results were generally found across these conditions.

Position of the syllable in the foot affects the frequency of F3, such that this formant is significantly higher in the first, stressed syllable in the foot than in the three following, unstressed syllables (F(3,6)=18.51, p < 0.01). This further confirms the assumption that stressed syllables are least susceptible to context-induced formant frequency lowering.

Position of the syllable in the foot also significantly affects the frequency of F2 (F(3,6)=6.67, p < 0.02). At first sight it appears that the first (stressed) syllable patterns with the third (unstressed) syllable, having higher frequencies than the two unstressed
syllables which are 2nd and 4th in the foot. In fact there is a significant vowel×position interaction, such that the pattern described only holds for /ɪ/ (F(3,6)=7.87, p < 0.001). The other two vowels examined (/i ɔ/) show no differences in F2 frequency between the three unstressed syllable positions in the foot (see Table 6.5). So the only evidence of a ‘stronger beat’ on the 3rd syllable of the foot is for /ɪ/.

<table>
<thead>
<tr>
<th>Position in foot</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ɪ/</td>
<td>2405</td>
<td>2379</td>
<td>2382</td>
<td>2329</td>
</tr>
<tr>
<td>/i/</td>
<td>1857</td>
<td>1612</td>
<td>1758</td>
<td>1684</td>
</tr>
<tr>
<td>/ʌ/ or /ʊ/</td>
<td>1352</td>
<td>1520</td>
<td>1550</td>
<td>1468</td>
</tr>
</tbody>
</table>

Table 6.5: Frequency of F2 in /ɪ i/ and /ʌ/ or /ʊ/ in different positions in a four syllable foot.

Figure 6.4 shows that the frequency of F4 is relatively constant across the different foot-positions, and this is confirmed by statistical analysis (F(3,6)=0.61, p < 0.63).

In summary, the well known relationship between stress and a syllable’s susceptibility to coarticulatory influence is supported. But little evidence is found to support claims that there is a need to differentiate between the unstressed syllables in a foot. Position in the foot need not be considered a factor in describing patterns of coarticulation for /r/ or /l/, as the only influence it has can be accounted for by the feature [+− stress]. Nooteboom (1991) suggests that alternating strong-weak beats on unstressed syllables are found within words and other studies on durational properties of vowels also find that word-boundaries are important. Cooper, Lapointe, and Paccia (1977) show that the addition of an unstressed syllable shortens the preceding stressed syllable more if there is no intervening word-boundary. In the experiment here the series of unstressed syllables were often in separate words, and this may explain the absence of the kinds of trochaic rhythm effects described by Nooteboom.

6.7 Summary and Conclusions

Unnatural-sounding rhythm is a major problem with most current speech synthesis and a great deal of research is being done to try and improve this aspect of synthetic speech
(cf. Jokisch, Hirschfeld, Eichner, and Hoffman 1998 and Febrer, Padrell, and Bonafonte 1998). However, the focus of such work is usually exclusively on temporal properties of the speech signal, so this chapter sought to link work on the durational properties of speech with spectral variation. The experiment reported here explored interactions between metrical structure and the temporal and spectral properties of individual syllables and emphasised the importance of linking our understanding of suprasegmental and segmental phenomena. No evidence was found to suggest that the unstressed syllables in a foot behaved differently in terms of their coarticulatory behaviour. It is possible that effects might be found for sequences of unstressed syllables within words, but further experimental work is needed to explore this. The experiment did reveal effects of foot-length on both temporal and spectral properties and these are summarised below.

As predicted, longer feet had shorter syllables. However, syllable compression was not incremental; 3-, 4- and 5-syllable feet patterned together, having syllables that were shorter than those in 2-syllable feet. Although this is contrary to the initial prediction, the finding is in accordance with Yang (1998) who finds that syllable compression with added syllables in street names is not linear, but is strongest as one progresses to words up to 3 syllables in length and then flattens out for words with more than 3 syllables (cf. also Port 1981). Yang suggests that this supports Klatt’s (1973) idea of the incompressibility of phonemes beyond a certain minimum duration. While there may be an upper limit on syllable compression where the determining factor is foot-length and the tendency to isochrony, the same notion of incompressibility may well not hold where syllable durations are shortened in rapid or casual speech. Acoustic studies using a variety of speech styles might profitably examine syllable durations to see if similar nonlinear principles of compression hold as in the foot-length experiment described here.

Also contrary to expectation was the fact that the degree of syllable compression was almost identical in stressed and unstressed conditions. Given this result, perhaps the most interesting finding in this experiment was that stressed and unstressed syllables did not behave identically in terms of their spectral properties in feet of different lengths. Stressed syllables showed no significant effect of foot-length on any of the formant frequencies examined. Some unstressed syllables, on the other hand, had lower formant frequencies in longer feet. This was true of F3 and F4 in /rV/ syllables, and F2 and F3 in /IV/ syllables.

The lowering of some formant frequencies in longer feet seems to be a natural consequence of syllable compression, which occurs as foot-length increases and which results
in articulatory undershoot. Two explanations were proposed for the fact that syllable compression did not produce formant frequency undershoot in stressed syllables. First, since stressed syllables are longer than unstressed syllables, it is possible that there is simply more time for articulators to reach their targets. A second possibility is that, since stressed syllables are perceptually more important, speakers make more of an effort to articulate clearly and thus attain formant frequency targets in such syllables. The latter explanation was felt to be more likely.

This chapter highlights some interesting interactions between the temporal and spectral properties of syllables. An important question for speech synthesis research is to what extent spectral variation can be produced in synthetic speech by accurate modelling of durational effects. The work on modelling rhythm in the Yorktalk synthesis system has shown that getting temporal detail right can significantly improve the intelligibility and naturalness of the synthetic speech produced (Ogden and Local 1992 and 1996). The data presented in this chapter suggests that if the timing is right, the spectral characteristics of the synthetic speech will also be improved.
Chapter 7

Concluding Remarks

This thesis began by describing how synthetic speech is disproportionately fragile in background noise and performs less well than natural speech in tests of memory and comprehension. It was suggested that some of the failings of synthetic speech are closely related to its unnatural sound quality and that by improving the naturalness of synthetic speech we will also improve its intelligibility, both at the segmental level and in tests of higher level comprehension. One aspect of speech which seems to be important to naturalness is the systematic context-induced segmental variability, which arises as a natural consequence of vocal tract dynamics, or which is at least expected to some extent by speakers of a particular language or dialect.

This thesis explored some relatively subtle aspects of coarticulatory variation in English, which are not modelled in most current text-to-speech synthesis systems. An initial production study established some patterns of acoustic variation in vowels in /C₁ V C₂ a/ sequences, where C₁ is either /r/ or /l/. A perceptual experiment showed that synthetic speech which contains such context-induced spectral variation is more intelligible in background noise than synthetic speech which lacks these effects. Having established the perceptual salience of this kind of small-scale coarticulatory detail in synthetic speech, the remainder of the thesis consisted of production studies which were designed to refine our understanding of patterns of coarticulatory variation. These studies looked in greater detail at long-domain lingual resonance effects, at the behaviour of vowels after consonant clusters and at the interaction between metrical structure and coarticulation. In this chapter I discuss some of the main themes of the experimental work and bring together some of the findings which were discussed in separate chapters.
7.1 Susceptibility to coarticulatory influence

Prosodic phonologists use /r/ and /l/ as examples of consonants which exert an influence over long stretches of the speech signal, with effects spreading throughout a syllable and beyond, and /i/ is often cited as a sound which is particularly susceptible to such context-induced variation (Kelly 1989). However, relatively little experimental work had been done to corroborate these claims. The variability of /i/ in particular seemed surprising, given that many other researchers suggest that /i/ is an extremely stable vowel in both articulatory and acoustic terms (cf. Recasens 1987). Taking this apparent contradiction as a starting point for an investigation into patterns of coarticulatory variation in English, Chapter 2 described acoustic variation in four front vowels /i I e æ/ after /r/ and /l/, using /h/ as a neutral standard of comparison.

/l/ exerted very little influence over following vowels, although F2 frequencies were slightly lower in /i/ and /e/ after /l/ than after /h/. Very clear patterns of r-induced formant frequency lowering were found for F2 and F3 in vowels after /r/ compared with those after /h/. The vowels were not equally susceptible to rhotic influence; greatest r-colouring was found in /i/, rather less in /i/ and /e/ and least in /æ/. Not surprisingly, since /i/ is the vowel most influenced by r-colouring, it is also a vowel which permits the spread of rhotic influence to non-adjacent segments. The experiment found evidence of F2 frequency lowering in the schwa in /r i C a/ sequences but not in any other preceding vowel contexts.

The results from this first experiment on coarticulatory variation show how difficult it is to predict susceptibility to coarticulatory influence. Most empirical work to date had suggested that /i/ is relatively impervious to context-induced variation, but this experiment supports the prosodic phonologists’ claims, finding /i/ to be just as prone to r-colouring as /e/. The putative correlation between tongue-height and resistance to coarticulatory influence does not apply to the sounds investigated here, as /i/ varies most between /h/ and /r/ contexts, whilst /æ/ varies relatively little. This experiment emphasises how much more work there is to be done, even to understand coarticulation in simple CV sequences. This pattern of susceptibility to rhotic influence in high front vowels was also supported by the work on long-domain resonance effects in Chapter 4. For vowels that are separated from the influencing rhotic by several segments, unstressed /i/ and /i/ showed signs of r-colouring whereas schwa was resistant to rhotic influence over this time domain.
Bladon and Al-Bamerni (1976) showed that clear /l/ is less resistant to context-induced variation than its dark counterpart, and they use an index of coarticulation resistance to describe these differences in the susceptibility or resistance of sounds to contextual influence. They note that coarticulation resistance specifications may not be language universal, and this may partially account for the discrepancies described in Chapter 2 between findings of coarticulation resistance in /i/ in Catalan, Italian, Japanese etc. (cf. Recasens 1985, Farnetani 1990 and Magen 1984) and other research demonstrating the susceptibility to coarticulatory influence of /i/ in Standard Southern and West Midlands accents of British English (see Chapter 2 and Kelly 1989). Bladon and Al-Bamerni also note that coarticulation resistance is highly idiolectal, as shown by Su, Li, and Fu (1974) in their work on speaker-specific nasal coarticulation in vowels. However, the susceptibility of /i/ to r-colouring described in Chapter 2 was not speaker-specific, but a systematic effect and the perceptual study in Chapter 3 demonstrated that this kind of context-induced variability can contribute to lexical access. So, in order to account for the discrepancy between empirical work showing coarticulatory resistance in /i/ and the experiment here demonstrating /i/’s susceptibility to r-colouring, it was suggested that a single coarticulation resistance index for individual sounds is insufficient. Instead susceptibility or resistance to coarticulatory influence may be highly context specific; high front vowels may well be very stable in many phonetic contexts, but /r/ seems to exert a strong influence over these sounds.

In terms of incorporating patterns of coarticulatory variation in text-to-speech synthesis systems, a single r-colouring algorithm for all vowels would fail to capture these differences in the coarticulatory resistance of sounds to contextual influence. In the synthesis experiment described in Chapter 3 the coarticulatory variation was incorporated in synthetic speech by a process of hand-editing based on formant frequency measurements made in natural speech. Having established that this kind of context-induced variation can contribute to the intelligibility of synthetic speech, the next stage would be to write rules which would produce appropriate formant frequency variation in each of the vowels examined here.

7.2 Long-domain rhotic resonance effects

Chapter 4 explored the spread of rhotic resonance effects over longer stretches of the speech signal, examining /VCVR/ and /rVCVR/ sequences. Not surprisingly, stressed
vowels which were not directly adjacent to the influencing /r/ proved to be completely
resistant to coarticulatory influence from the /r/. But unstressed vowels had lower F2 and
F3 frequencies in the non-adjacent context of /r/. Perhaps most interesting was the finding
that this r-colouring in non-adjacent vowels seemed to encourage greater rhotic influence on
adjacent vowels. For instance, if V₁ is unstressed in the sequence /V₁ C V₂ r/, V₂ has lower
F2 and F3 frequencies than where V₁ is stressed. Similar effects are found in /r V₃ C V₄/
sequences. Again, where V₄ is unstressed and therefore susceptible to rhotic influence, this
encourages greater r-colouring in both stressed and unstressed instances of V₃. It seems
that r-colouring in the non-adjacent vowels reinforces r-colouring in vowels directly adjacent
to the rhotic consonant.

This result suggests complex interactions between segments over long stretches of
the speech signal and highlights the difficulty of modelling this kind of coarticulatory detail
in the rules for text-to-speech systems. This finding also demonstrates the limitations of
concatenative synthesis, as it is extremely hard to define a temporal domain for the extent
of coarticulatory influence. In order to capture the kinds of effect just described one would
either need very long units, or the ability to manipulate parameters in shorter units depending
on the properties of surrounding syllables. Not surprisingly, speech synthesis systems
do not generally capture context-induced variation spreading over such long stretches of the
speech signal, and these kinds of coarticulatory effects are rather poorly understood.

As stated, the influence of /r/ on non-adjacent vowels was primarily evident in F3
frequency lowering, although F2 frequency was also slightly lower in non-adjacent r-contexts.
F4 frequency did not vary significantly between non-adjacent /r/ and /h/ contexts. Stevens
(1998) states that low F4 or F5 is related to tongue-tip retroflexion and so it seems that
tongue-tip retroflexion does not spread across intervening segments, whereas retroflexion is
a factor in the influence of /r/ on vowels in both /Vr/ and /rV/ sequences. The acoustic
variation described for F2 and F3 in non-adjacent vowels, therefore, appears to be primarily
due to tongue-body or lip-rounding effects. Support for this is found in West (1999) who
compares /ə₁ d ə₂ r/ and /ə₁ d ə₂ l/ sequences and finds lower F3 frequency and evidence
of lip-rounding and a higher mid-tongue position in /ə₁/ in the non-adjacent context of
/r/. This suggests that rhotic effects spreading over several segments involve tongue-body
raising and lip-rounding. These effects are rather different to local rhotic coarticulation in
CV sequences, which involves some degree of tongue-tip retroflexion, as indicated by F4
frequency lowering.
These findings accord with Öhman’s (1966) x-ray data for Swedish and English VCVs, which show that tongue-body shape for the second vowel is anticipated very early in the first vowel, while the gesture for a /d/ or /g/ can be regarded as a short-term perturbation superimposed on the more long-term tongue-body configuration for the vowels (cf. also Perkell and Cohen 1997). Öhman suggested that vowel gestures are independent to some extent from consonantal gestures and in later work he was able to capture the quasi independent apical and dorsal tongue systems in a numerical model of coarticulation, although he also pointed out that it had limitations (Öhman 1967).

Öhman claims that vowel-to-vowel tongue-body coarticulation is blocked in VCVs in Russian, which contrasts velarized and palatalized consonants and thus imposes tongue-body configuration requirements on the intervening consonant. However, provided the articulatory requirements of the intervening segments do not prohibit it, tongue-body effects will generally spread over longer stretches of the speech signal than tongue-tip effects and this is explicable in terms of the slower capacity for movement of the tongue-body compared with the tongue-tip. It is generally accepted that the variety of English /r/ studied in this thesis involves either tongue-tip retroflexion, or tongue bunching, or both, and so can be viewed as combining vocalic and consonantal articulatory features. The data presented here suggest that English /r/ can have a significant effect both locally, and over longer domains, in which the influenced segments are separated from the rhotic consonant by several other phonemes. As computer models of tongue dynamics become more sophisticated (cf. Kakita, Fujimura, and Honda 1985, Wilhelms-Tricarico and Perkell 1994) it would be worthwhile exploring the differences between these quasi-independent tongue systems: such models may assist predictions about domains of coarticulatory influence, but to date they don’t seem to have addressed this type of issue.

The extent of the formant frequency variation described for non-adjacent vowels in Chapter 4 is relatively small, but in combination with the larger effects in adjacent vowels, such acoustic detail is likely to be perceptually salient. It was also pointed out, that one reason for the relatively small scale of the long-domain effects described here is that the speech-style elicited for the experiment was careful and relatively slow. It seems fair to assume that long-domain coarticulatory variation would be far more marked in casual or rapid speech, and it seems likely to be crucial if such speech styles are to be successfully modelled by text-to-speech systems. Granström (1992) points out that users of speech synthesisers are now demanding both more natural speech and a variety of speech styles. In
particular, fast synthetic speech which is highly intelligible is a key requirement of visually impaired users of reading machines.

7.3 Temporal variation and coarticulatory effects

The experiments in Chapters 5 and 6 described segmental and metrical influences on vowel duration and explored the consequent effects on spectral characteristics.

7.3.1 Segmental influences on timing

Chapter 5 explored the durational and spectral properties of vowels after a series of consonant clusters. Very little work has been done on the coarticulatory influence of different clusters on the spectral characteristics of vowels, and van Santen (1992a) highlighted the lack of work on vowel durations after consonant clusters, although rather more has been done on anticipatory effects. So this chapter provided new information regarding both formant frequency and temporal variation in vowels after clusters. Most interesting was the apparently neat relationship between the two.

The cluster experiment showed that vowels get progressively shorter, the more elements there are in the syllable onset. So vowels are longest after singleton /r/, shorter after velar+r and alveolar+r and shortest of all after /str/ and /skr/. Similarly, vowels are longer after /l/ than after velar+l. As vowel durations decreased, formant frequencies generally became lower. This was explained in terms of articulatory undershoot. F2, F3 and F4 frequencies are lower in /r/ than in the vowels examined here, and so where the articulators have less time to reach their targets this results in formant frequency lowering in the vowels. A similar effect was found for F2 after /l/, which has a lower F2 frequency than most of the vowels examined.

7.3.2 Metrical influences on timing

Compared with the paucity of studies on durational properties of vowels after consonant clusters, a great deal of work has been done investigating the influence of metrical structure on segment durations. The background to descriptions of English as a stress-timed language is discussed in detail in Chapter 6. There is at least a tendency in English for syllables to compress as more unstressed syllables are added to a foot, although other factors
such as syllable weight are also important.

The experiment in Chapter 6 extends work on temporal variation to explore the spectral characteristics of segments in feet of different lengths. The experiment confirmed that syllable nuclei are shorter in longer feet. This compression is not incremental: the 3-, 4- and 5-syllable feet patterned together in having shorter syllable nuclei than the 2-syllable feet. Stressed and unstressed syllables compressed by approximately the same amount in absolute terms (ca. 10ms), with stressed syllables compressing slightly less in proportional terms.

Although the behaviour of stressed and unstressed syllables was very similar in terms of their temporal compression in longer feet, their spectral characteristics were different. The stressed syllables showed no variation in formant frequencies in the feet of different lengths, even though they were susceptible to syllable compression. On the other hand, the unstressed syllables had lower F3 and F4 frequencies in vowels after /r/ in the 3-, 4- and 5-syllable feet than in the 2-syllable feet, and a similar pattern is found for F2 and F3 in the /IV/ sequences. As with the pattern of spectral variation in vowels after different consonant clusters, the formant frequency variation found in unstressed syllables seems to be closely related to the temporal variation found for the same syllables. Shorter unstressed vowels allow less time for the articulators to attain their targets. In the consonant contexts examined here this articulatory undershoot tends to result in formant frequency lowering. However, in the stressed syllables, temporal compression did not lead to articulatory undershoot probably because speakers make an effort to make these syllables maximally intelligible (cf. Lieberman 1963) and so move the articulators more rapidly to attain targets (cf. Ostry, Keller, and Parush 1983, Ostry, Feltham, and Munhall 1984). This explanation is in accordance with claims that speakers actively control degree of coarticulation and articulatory undershoot (cf. Lindblom 1990, Moon and Lindblom 1994, Pols and van Son 1993).

7.3.3 Summary: Temporal variation and coarticulatory effects

The experiments on clusters and metrical structure confirm that temporal and spectral properties are closely related. The formant frequency variation found in these experiments seems to follow naturally from the variation in segment duration; as segments become shorter, so articulatory undershoot increases. However, stress of the syllable con-
cerned is also a factor, as speakers seem to resist articulatory undershoot in stressed syllables, even where they permit temporal compression. Most importantly, these experiments suggest that better modelling of rhythm in synthetic speech can also bring improvements in the spectral characteristics of the speech signal, as long as unit selection is appropriate (in concatenative synthesis) and as long as the rules relate undershoot to timing differences and stress.

7.4 Perceptual salience of coarticulatory detail

As stated, the motivation behind the acoustic measurements presented in this thesis is to improve both the naturalness and the intelligibility of rule-generated synthetic speech. The experiment in Chapter 3 tests the perceptual salience of the coarticulatory variation described in Chapter 2, by comparing synthetic speech which lacks the fine spectral detail with synthetic speech which has been hand-edited to incorporate such effects. Although problems were encountered with the edited forms of l-context tokens, improvements in intelligibility of 7–28% were found for the edited forms of r-context words when played in background noise.

Chapter 2 showed that both F2 and F3 in the vowel in /rI/ are lowered to the extent that their values are lower than those for the more open vowel /ɛ/ in the same consonant context. One might imagine that this would lead to perceptual confusion. However, this kind of coarticulatory variation which results in an overlapping of the acoustic characteristics of phonologically distinctive sounds is common in the speech signal and listeners seem to have few problems coping with it. The perceptual study here shows that listeners can utilise such effects to aid lexical access. The key here of course is context. Listeners appear to know that /ɪ/ in the context of a preceding /r/ may have F2 and F3 frequency lower than those for /ɛ/ in the same context. Furthermore, if such information is missing, as in much synthetic speech, the resulting acoustic signal strikes the listener immediately as being unnatural and is likely to be less robust in difficult listening conditions.

7.4.1 Lexical influences on the salience of coarticulatory detail

Previous work had already suggested that fine coarticulatory detail could improve the intelligibility of synthetic speech (cf. Hawkins and Slater 1994). Chapter 3 extends such work by focusing on rhotic and lateral resonance effects, but perhaps most importantly it
explored the influence of lexical and contextual cues on the perceptual salience of coarticulatory detail. Much of the perceptual testing on synthetic speech has used very carefully controlled experiments focussing on nonsense words in semantically anomalous sentences (see Chapter 1, Section 1.3). The experiment here investigated whether fine coarticulatory detail contributed equally to the intelligibility of nonsense words and real words and also compared the effect of incorporating coarticulatory detail in monosyllabic and polysyllabic real words. Since polysyllabic words typically have low lexical neighbourhood densities (few similar sounding words) it was thought that the extra coarticulatory information in the edited forms might be less helpful than for the monosyllabic real words which have a greater number of words with which they can potentially be confused.

As predicted, the incorporation of coarticulatory detail resulted in the greatest improvements in intelligibility in the nonsense word set, where listeners are completely dependent on the acoustic signal for information. However, the polysyllabic real word set, where small or no changes in intelligibility had been expected after the incorporation of coarticulatory detail, showed huge variation in intelligibility. Some words had very big improvements after editing, for instance the word *revenue* improved in intelligibility by 21%. But *bereavement*, another word in the set, fell in intelligibility by 66% due to inappropriate editing of the acoustic parameters over the */@ri:vm@/* sequence. So, contrary to expectations, very small changes in just a small portion of the word seem to have a large impact on the intelligibility of the remainder of the word, affecting the intelligibility of segments which were untouched in the editing process. This can result in large improvements in intelligibility where appropriate changes are made, but equally, perceptual coherence is easily lost if the spectral detail is wrong. This is an important finding, as it highlights the importance of getting spectral detail right, and of maintaining perceptual coherence. It also demonstrates that relatively small adjustments to one portion of the acoustic signal can affect the intelligibility of longer stretches of speech.

7.4.2 Perceptual coherence and perceptual testing

The discussion in the previous section highlights some of the difficulties of perceptual testing: changes to one section of the speech signal can have a positive or detrimental effect on the intelligibility of segments whose acoustic properties have not been changed. Similarly, changing one acoustic parameter without making appropriate changes to other
parameters may result in a loss of perceptual coherence and a fall in intelligibility. This is demonstrated in work by Docherty (1992) on differences in the timing of voicing in British English obstruents. Docherty conducts an experiment where the rules for a text-to-speech synthesiser are improved to include his findings regarding timing of voicing in obstruents, however, he fails to find much convincing evidence that this temporal detail improves the intelligibility of the synthetic speech. Docherty suggests that this is not because such temporal detail is unimportant, but that altering the timing of voicing, whilst leaving other parameters untouched is rather crude — ideally one would model co-variation of voicing intensity and other parameters such as burst intensity and level of frication.

It also seems reasonable to suppose that subtle differences between stimuli are likely to be swamped if the general quality of the synthetic speech is poor. Docherty himself suggests this, as do more recent experiments. Whereas Ogden, Local, and Carter (1999) get improvements in intelligibility of around 4% by improving the timing of words in rather poor quality concatenated synthetic speech, Heid and Hawkins (1999) get improvements of 11% by introducing far smaller changes to just one or two segment boundaries in high quality synthetic speech. It has not been established whether these contrasting improvements in intelligibility in fact reflect the greater importance of segment boundary effects, or whether it is simply that the improvements brought by better timing were swamped by the poorer overall quality of the synthetic speech in which they were incorporated, but the latter explanation seems much the more likely.

The perceptual experiment here avoids some of the pitfalls of perceptual testing, firstly by careful modifications to the F0 contour, timing and some of the spectral properties of the basic synthetic rule-forms, so that the quality of each synthesised sentence is high to start with. This seems to be crucial if the kind of subtle acoustic detail described here is to contribute to intelligibility. In Docherty’s experiment a closed response design was used, which focused on isolated words in good listening conditions, so many of the intelligibility scores showed ceiling effects. The experiment here used whole sentences, an open-response format and played the speech in background noise. This made the task sufficiently difficult that listeners made mistakes and so differences between the rule-generated synthetic speech and the edited forms could be highlighted.

Furthermore, the context-induced coarticulatory detail of interest was introduced over a relatively long stretch of the speech signal (/ɑ C V C ɑ/ sequences), thus maintaining perceptual coherence at least over the edited portion of the signal. Problems were
encountered with the edited portion sounding over-coarticulated, or even as though it had a different voice quality compared to the rest of the sentence. However, by reducing the degree to which formant frequencies were altered, guided by auditory assessment on the part of the experimenter and other speakers of SSBE, such problems were generally overcome.

Interestingly, it was found that far smaller changes to formant frequencies were appropriate in the synthetic speech than suggested by the measurements in natural speech. It may have been that the natural speech was too casual to work well as a model for the Infovox-generated speech. Alternatively, it may be that the lack of this type of fine acoustic detail in the majority of the carrier sentence meant that the sudden introduction of such detail over a small section of the sentence strikes the listener as odd. This would again indicate the importance of perceptual coherence in the broadest sense, with listeners being sensitive to acoustic properties pertaining to whole utterances. At any rate, it was very easy to lose perceptual coherence by overdoing formant frequency adjustments in the sequence of interest.

Considerable care was also taken to make appropriate changes to all formant frequencies in the vowels which were thought to be affected by the changing consonant contexts. Previous work (Tunley 1995) had suggested F1 varied little between /r/ and /l/ contexts, and so this formant frequency was unchanged. But both F2 and F3 were modified in accordance with the findings in natural speech. Later experiments (see Chapters 4–6) showed that F4 is also involved in r-colouring in vowels. Modifying this formant frequency as well, may have produced even bigger improvements in intelligibility. However, the Infovox system at that stage of development did not permit modification of F4 separately from formant frequencies F5 and above. It would be interesting to establish if variations in the frequency of F4 do indeed contribute to the perceptual coherence and intelligibility of speech.

All of this highlights the care which must be taken in perceptual testing, particularly when the focus is on small-scale acoustic detail. The results suggest that if the quality of the synthetic speech is relatively good, and if listening conditions are difficult, then relatively subtle changes in the spectral properties of a few sounds can result in significant improvements in the intelligibility of an even longer portion of the speech signal.

Docherty’s (1992) perceptual experiment included a discrimination task, in which listeners were asked if they could tell the difference between the stimuli. He failed to find any reliable evidence that listeners were sensitive to the changes made to the speech synthesis rules. A discrimination task was not undertaken here, because it was felt that untrained
listeners would be unlikely to be able to tell the difference between the rule and edited forms of the synthetic speech. The kind of coarticulatory detail described in this thesis is relatively subtle, and often barely noticeable even to the trained ear. And yet the interesting thing is that this small-scale acoustic detail does have an effect on the intelligibility of synthetic speech.

7.4.3 Importance of sensitive and application-oriented perceptual testing

Chapter 1 highlighted some of the shortcomings of traditional perceptual tests. Ceiling effects were avoided in the perceptual work here by playing the synthetic speech in background noise, and this also had the advantage of mimicking many real-world situations in which synthetic speech is used, such as noisy open-plan offices, airports etc. One of the problems with many of the testing methods used on synthetic speech is that they do not directly assess the speech in the kinds of contexts in which it is most commonly used. For instance, O’Malley and Caisse (1987) estimate that about 90% of computer speech applications involve using the telephone, yet the proportion of telephone intelligibility tests on synthetic speech is relatively small. Systems that are tailored to perform best with telephone bandwidth and 8kHz sampling rates cannot be properly tested in quiet rooms over headphones. Ideally the decrement in the intelligibility of synthetic speech between good and telephone listening conditions should match that for natural speech. And this itself is a good general test of the quality of the synthetic speech.

Ultimately end-users are not interested in laboratory testing and the perceptual experiment presented here was designed to be as realistic and as natural a task as possible, whilst still providing the experimenter with useful information about the synthetic speech. Future work might use a range of perceptual tests to assess whether the kind of small-scale coarticulatory detail under discussion here can assist higher-level comprehension processes and reduce memory load. Given that fine context-induced acoustic variation can assist lexical access in difficult listening conditions, it seems likely that this is precisely the kind of detail which could contribute to perceptual coherence in good listening conditions and would therefore reduce the cognitive effort required to process synthetic speech.
7.5 Afterword: Combined influences on r-colouring

More extensive and consistent coarticulatory effects were found in vowels after /r/ than /l/, so this final section focuses exclusively on r-colouring and summarises the contexts which encourage the spread of rhotic influence. The experiment in Chapter 2 established a hierarchy of susceptibility to rhotic influence for a series of front vowels, such that /ɪ/ > /i/ ≈ /ɛ/ > /æ/. The long-domain experiment in Chapter 4 showed that high front vowels /i/ and /ɪ/ were prone to r-colouring even when not directly adjacent to the influencing consonant, provided they were unstressed. Furthermore where there is r-colouring in these non-adjacent vowels it reinforces the influence of the rhotic consonant on vowels directly adjacent to the /r/. In the cluster experiment in Chapter 5, an additional hierarchy of susceptibility to coarticulatory influence was established: the more segments there are in the syllable onset, then the shorter the following tautosyllabic vowel and the greater the r-induced formant frequency lowering, such that /sCr/ > /Cr/ > /r/. Finally, the experiment in Chapter 6 showed that vowel durations are shorter, and r-induced formant frequency lowering is greater, in unstressed syllables in feet of 3 or more syllables.

Combining these factors, Figure 7.1 contrasts two phrases which should differ in their propensity to allow r-colouring to spread. In *The bad rap artist* (non-rhotic accent, i.e. /ðə bæd ræp ˈɑːst/), the r-syllable is stressed, has a singleton r-onset followed by an open vowel and it occurs in a one-syllable foot preceded and followed by stressed syllables. Together these factors mean that the extent of r-colouring is limited to a single syllable, and formant frequency lowering in the open vowel /æ/ will be less than in a high front vowel. By contrast, in the phrase *The tapestry bikini* (/ðə ˈtæpəstri bɪˈkini/), the r-syllable is unstressed, has a 3-phoneme cluster onset /str/ followed by the high front vowel /i/ and it is in a 4-syllable foot. The surrounding unstressed syllables will also be prone to r-colouring, so the temporal domain of r-colouring is greater than in *The bad rap artist*, and the degree of formant frequency lowering in /ri/ is greater than in /ræ/.

These sentences themselves raise some interesting questions about factors influencing the spread of r-colouring. Some preliminary work suggests that rhotic influence can spread through a stressed syllable to a non-adjacent unstressed vowel (Sarah Hawkins, personal communication). This would mean that the unstressed /ə/ in *The of The bad rap artist*, might be prone to r-induced formant frequency lowering, even though the vowel in *bad* is resistant to these effects. Finally, the experiments in this thesis did not explore the
temporal extent of r-colouring over more than 2 syllables. If we alter the first example in Figure 7.1 to have a longer foot containing the r-syllable, e.g. *The tapestry is amazing* (/θə taˈpɛstrɪ ɪz əˈmeɪzn/) , it is possible that r-colouring will spread throughout the three unstressed syllables: /stri ə/. Future work should examine longer sequences of unstressed syllables to establish the temporal domain of rhotic influence.
Appendix A

Pre-synthesis production study

A.1 Background to recording

Chapter 3 describes how problems were encountered when the acoustic data from the production study in Chapter 2 were used as the model for improving synthetic speech. It was thought that the speech style elicited in that experiment was too casual, and so a second recording was undertaken, where the speaker was asked to produce a more clear and careful speech style. The data from that second recording are given in this appendix.

<table>
<thead>
<tr>
<th>Fillers</th>
</tr>
</thead>
<tbody>
<tr>
<td>There was a funny banging again.</td>
</tr>
<tr>
<td>She thought about pineapples constantly.</td>
</tr>
<tr>
<td>Quickly take it.</td>
</tr>
<tr>
<td>Next to Jim.</td>
</tr>
<tr>
<td>He's trouble.</td>
</tr>
<tr>
<td>The silver chalice had been stolen.</td>
</tr>
<tr>
<td>Take the leather-bound book with you.</td>
</tr>
<tr>
<td>Mr. Hopper took a taxi there.</td>
</tr>
<tr>
<td>Norman Edwards plays full-back for Leeds.</td>
</tr>
<tr>
<td>Rachel Maddock gave the lecture.</td>
</tr>
<tr>
<td>John remembered the giraffe was there.</td>
</tr>
<tr>
<td>In the end he was out again.</td>
</tr>
<tr>
<td>Eat it.</td>
</tr>
<tr>
<td>Phone Iceland now.</td>
</tr>
<tr>
<td>Magical mist hung over the hills.</td>
</tr>
<tr>
<td>Incredible things happened there once.</td>
</tr>
<tr>
<td>Imagine something even scarier.</td>
</tr>
<tr>
<td>Graham Beckett is a relative of his.</td>
</tr>
<tr>
<td>Trevor White mowed the lawn.</td>
</tr>
</tbody>
</table>

Table A.1: Filler sentences used in the pre-synthesis production study.

The 36 sentences in Table 3.1 (Chapter 3, page 40) were randomized along with 19 fillers (Table A.1) in 10 blocks to obtain 10 repetitions of each target syllable. A single male
APPENDIX A. PRE-SYNTHESIS PRODUCTION STUDY

140

speaker (RJ) from the first production experiment (described in Chapter 2) was selected to record these sentences. RJ is probably best described as a speaker of “educated Northern” English with substantial levelling towards SSBE, particularly in formal recording conditions.

RJ was instructed to speak in a clear and fairly careful manner at a rate that he found comfortable. The aim was to elicit maximally clear speech which would provide a good basis on which to model synthetic speech with a view to improving its intelligibility. Some training was given in order to elicit the desired speech style before the speaker was given the full set of 550 sentences to read. Two short breaks were taken during the recording session. The recording was made onto DAT tape in a sound treated room using a Sennheiser MKH 40 P48 microphone.

A.2 Measurements

Sequences of interest were as outlined in Figure A.1 (replicated from page 38). The frequency of F2 and F3 were measured at the midpoint of all vowels in the sequence, thus allowing ‘long-domain’ coarticulatory variation to be modelled. The same formant frequencies were also measured at the midpoint of the /h, r/ and /l/. All measurements were made in the same way as for the first production study and full details are given in Chapter 2, Section 2.5.

\[
\begin{align*}
\alpha_1 \quad \{ & \text{h} \} \quad \{ & \text{i} \} \\
\{ & \text{r} \} \quad \{ & \text{i} \} \\
\{ & \text{l} \} \quad \{ & \text{e} \} \\
C \quad \alpha_2
\end{align*}
\]

Figure A.1: Schematized outline of sequence of interest, indicating with arrows the coarticulatory effects to be examined.

A.3 Results

Tables A.2 to A.5 give the formant frequency measurements in the main vowel of interest, in the consonants and in the two schwas. Predictably, given the more careful
speech-style in this recording, the difference between formant frequencies in vowels in the context of /r/ and /l/ compared with those in the context of /h/ is generally smaller than those described in Chapter 2. However, there is still evidence of substantial context-induced effects on formant frequencies, particularly for vowels in the context of /r/.

<table>
<thead>
<tr>
<th>Consonant context</th>
<th>Monosyll.</th>
<th>Polysyll.</th>
<th>Nonsense</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F2</td>
<td>F3</td>
<td>F2</td>
</tr>
<tr>
<td>/i/ /h/</td>
<td>2300</td>
<td>3132</td>
<td>2284</td>
</tr>
<tr>
<td>/r/</td>
<td>2181</td>
<td>2984</td>
<td>2199</td>
</tr>
<tr>
<td>/l/</td>
<td>2233</td>
<td>2999</td>
<td>2249</td>
</tr>
<tr>
<td>/i/ /h/</td>
<td>2004</td>
<td>2585</td>
<td>2042</td>
</tr>
<tr>
<td>/r/</td>
<td>1741</td>
<td>2319</td>
<td>1678</td>
</tr>
<tr>
<td>/l/</td>
<td>1949</td>
<td>2575</td>
<td>1757</td>
</tr>
<tr>
<td>/ɛ/ /h/</td>
<td>1962</td>
<td>2795</td>
<td>1815</td>
</tr>
<tr>
<td>/r/</td>
<td>1582</td>
<td>2363</td>
<td>1523</td>
</tr>
<tr>
<td>/l/</td>
<td>1582</td>
<td>2395</td>
<td>1579</td>
</tr>
<tr>
<td>/æ/ /h/</td>
<td>1399</td>
<td>2238</td>
<td>1434</td>
</tr>
<tr>
<td>/r/</td>
<td>1406</td>
<td>2183</td>
<td>1354</td>
</tr>
<tr>
<td>/l/</td>
<td>1247</td>
<td>2114</td>
<td>1304</td>
</tr>
</tbody>
</table>

Table A.2: F2 and F3 frequencies measured in /i ɛ æ/ in the consonant contexts /h r l/ in various word types. All formant frequency values are in Hz and are averaged over 10 repetitions.
Table A.3: F2 and F3 frequencies measured in the consonants /h r l/ in the vowel contexts /i I E æ/ in various word types. All formant frequency values are in Hz and are averaged over 10 repetitions.

<table>
<thead>
<tr>
<th>Vowel context</th>
<th>Monosyll.</th>
<th>Polysyll.</th>
<th>Nonsense</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F2</td>
<td>F3</td>
<td>F2</td>
</tr>
<tr>
<td>/h/</td>
<td>2251</td>
<td>2706</td>
<td>2284</td>
</tr>
<tr>
<td>/i/</td>
<td>1999</td>
<td>2664</td>
<td>2033</td>
</tr>
<tr>
<td>/e/</td>
<td>1919</td>
<td>2719</td>
<td>2006</td>
</tr>
<tr>
<td>/æ/</td>
<td>1358</td>
<td>2162</td>
<td>1629</td>
</tr>
<tr>
<td>/r/</td>
<td>1074</td>
<td>2009</td>
<td>1158</td>
</tr>
<tr>
<td>/I/</td>
<td>1023</td>
<td>1978</td>
<td>1028</td>
</tr>
<tr>
<td>/e/</td>
<td>1092</td>
<td>1864</td>
<td>1193</td>
</tr>
<tr>
<td>/æ/</td>
<td>1000</td>
<td>1872</td>
<td>1104</td>
</tr>
<tr>
<td>/l/</td>
<td>1413</td>
<td>2442</td>
<td>1560</td>
</tr>
<tr>
<td>/I/</td>
<td>1430</td>
<td>2607</td>
<td>1501</td>
</tr>
<tr>
<td>/e/</td>
<td>1244</td>
<td>2390</td>
<td>1438</td>
</tr>
<tr>
<td>/æ/</td>
<td>1094</td>
<td>2287</td>
<td>1147</td>
</tr>
</tbody>
</table>

Table A.4: F2 and F3 frequencies measured in /ɑ1/ of Figure A.1 in the vowel contexts /i i e æ/, consonant contexts /h r l/ in various word types. All formant frequency values are in Hz and are averaged over 10 repetitions.

<table>
<thead>
<tr>
<th>Vowel context</th>
<th>Consonant context</th>
<th>Monosyll.</th>
<th>Polysyll.</th>
<th>Nonsense</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F2</td>
<td>F3</td>
<td>F2</td>
</tr>
<tr>
<td>/i/</td>
<td>/h/</td>
<td>1781</td>
<td>2514</td>
<td>1866</td>
</tr>
<tr>
<td>/i/</td>
<td>/r/</td>
<td>1581</td>
<td>2346</td>
<td>1263</td>
</tr>
<tr>
<td>/i/</td>
<td>/l/</td>
<td>1394</td>
<td>2456</td>
<td>1539</td>
</tr>
<tr>
<td>/I/</td>
<td>/h/</td>
<td>1635</td>
<td>2520</td>
<td>1662</td>
</tr>
<tr>
<td>/I/</td>
<td>/r/</td>
<td>1448</td>
<td>2288</td>
<td>1281</td>
</tr>
<tr>
<td>/I/</td>
<td>/l/</td>
<td>1461</td>
<td>2448</td>
<td>1539</td>
</tr>
<tr>
<td>/e/</td>
<td>/h/</td>
<td>1657</td>
<td>2620</td>
<td>1784</td>
</tr>
<tr>
<td>/e/</td>
<td>/r/</td>
<td>1282</td>
<td>2340</td>
<td>1514</td>
</tr>
<tr>
<td>/e/</td>
<td>/l/</td>
<td>1365</td>
<td>2392</td>
<td>1938</td>
</tr>
<tr>
<td>/æ/</td>
<td>/h/</td>
<td>1428</td>
<td>2437</td>
<td>1529</td>
</tr>
<tr>
<td>/æ/</td>
<td>/r/</td>
<td>1357</td>
<td>2139</td>
<td>1367</td>
</tr>
<tr>
<td>/æ/</td>
<td>/l/</td>
<td>1307</td>
<td>2390</td>
<td>1260</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>/i/</td>
<td>/h/</td>
<td>1646</td>
<td>2350</td>
<td>1413</td>
</tr>
<tr>
<td></td>
<td>/r/</td>
<td>1743</td>
<td>2351</td>
<td>1236</td>
</tr>
<tr>
<td></td>
<td>/l/</td>
<td>1787</td>
<td>2360</td>
<td>1765</td>
</tr>
<tr>
<td>/i/</td>
<td>/h/</td>
<td>1795</td>
<td>2346</td>
<td>1182</td>
</tr>
<tr>
<td></td>
<td>/r/</td>
<td>1599</td>
<td>2294</td>
<td>1307</td>
</tr>
<tr>
<td></td>
<td>/l/</td>
<td>1600</td>
<td>2369</td>
<td>1153</td>
</tr>
<tr>
<td>/ɛ/</td>
<td>/h/</td>
<td>1851</td>
<td>2477</td>
<td>1805</td>
</tr>
<tr>
<td></td>
<td>/r/</td>
<td>1729</td>
<td>2366</td>
<td>1788</td>
</tr>
<tr>
<td></td>
<td>/l/</td>
<td>1927</td>
<td>2468</td>
<td>1964</td>
</tr>
<tr>
<td>/æ/</td>
<td>/h/</td>
<td>1837</td>
<td>2436</td>
<td>1778</td>
</tr>
<tr>
<td></td>
<td>/r/</td>
<td>1869</td>
<td>2511</td>
<td>1185</td>
</tr>
<tr>
<td></td>
<td>/l/</td>
<td>1827</td>
<td>2463</td>
<td>1229</td>
</tr>
</tbody>
</table>

Table A.5: F2 and F3 frequencies measured in /ɔ2/ of Figure A.1 in the vowel contexts /i ɛ æ/, consonant contexts /h r l/ in various word types. All formant frequency values are in Hz and are averaged over 10 repetitions.
Appendix B

Synthesis experiment: Acoustic data for isolated vowels

B.1 Background

As well as the recording for the synthesis experiment which is described in Appendix A, RJ recorded a set of words and vowels in isolation. The spectral properties of these vowels were compared to equivalent vowels synthesised on the Infovox system, in order to assess how RJ could be used as a model for modifications to the synthetic speech. The formant frequencies in these isolated words and vowels are presented here.

The following vowels were recorded in isolation: /i: e æ ã u ø/ and a similar range of vowels were recorded in real words beginning with a voiced or voiceless bilabial stop and ending in a voiceless velar stop: beak, pick, peck, back, bark, pork, book. The vowels in isolation and those in the words are not identical, as the aim of this recording was simply to cover a range of vowels which could be compared with vowels produced by the Infovox system.

Recording details are the same as for the main part of the pre-synthesis production study (see Appendix A). Each vowel or word was read twice by the speaker, and the results are averaged across these repetitions.
B.2 Results

F1, F2 and F3 frequencies were measured at the midpoint of each vowel of interest, and average formant frequencies are presented in Tables B.1 and B.2.

<table>
<thead>
<tr>
<th>Vowel</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i/</td>
<td>276</td>
<td>2435</td>
<td>3151</td>
</tr>
<tr>
<td>/ε/</td>
<td>764</td>
<td>2081</td>
<td>2763</td>
</tr>
<tr>
<td>/æ/</td>
<td>922</td>
<td>1558</td>
<td>2716</td>
</tr>
<tr>
<td>/ɑ/</td>
<td>844</td>
<td>1041</td>
<td>2526</td>
</tr>
<tr>
<td>/ɔ/</td>
<td>303</td>
<td>728</td>
<td>2477</td>
</tr>
<tr>
<td>/ʊ/</td>
<td>276</td>
<td>756</td>
<td>2389</td>
</tr>
<tr>
<td>/ʌ/</td>
<td>557</td>
<td>1172</td>
<td>2424</td>
</tr>
</tbody>
</table>

Table B.1: F1, F2 and F3 frequencies (in Hz) in isolated vowels from a single speaker, averaged over 2 repetitions.

<table>
<thead>
<tr>
<th>Vowel</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i/</td>
<td>292</td>
<td>2456</td>
<td>3280</td>
</tr>
<tr>
<td>/ɪ/</td>
<td>352</td>
<td>2219</td>
<td>2796</td>
</tr>
<tr>
<td>/e/</td>
<td>798</td>
<td>2032</td>
<td>2727</td>
</tr>
<tr>
<td>/æ/</td>
<td>953</td>
<td>1567</td>
<td>2782</td>
</tr>
<tr>
<td>/ɑ/</td>
<td>684</td>
<td>1039</td>
<td>2559</td>
</tr>
<tr>
<td>/ɔ/</td>
<td>293</td>
<td>723</td>
<td>2500</td>
</tr>
<tr>
<td>/ʊ/</td>
<td>372</td>
<td>1005</td>
<td>2418</td>
</tr>
</tbody>
</table>

Table B.2: F1, F2 and F3 frequencies (in Hz) in vowels in real words recorded by a single speaker, averaged over 2 repetitions. Each word is a CVC monosyllable, where the syllable onset is a voiced or voiceless bilabial stop and the coda is a voiceless velar stop.
Bibliography

Fairbanks, B., N. Guttman, and M. S. Miron (1957). The effects of time compression upon the comprehension of connected speech. *Journal of Speech and Hearing Disorders* 22, 10–19.

BIBLIOGRAPHY

