Last week...

- Introduction to the architecture of the vocal tract
- Pulmonic egressive airstream mechanism
- Focus on *pulmonic consonants*
 - manner – kind of constriction
 - plosive, fricative, approximant, etc.
 - place – location of the construction
 - bilabial, labiodental, dental, alveolar, etc.
- Mentioned different airstreams
 - pulmonic
 - glottalic
 - velaric
This week

• Finish off airstreams
• Talk about voicing
• Vowels
• Introduction to *phonetic* vs. *phonemic* transcription
Airstream

• Airflow from lungs is just one possibility for consonant production
 – pulmonic ingressive – not used
 • except in 1 constructed ceremonial language Damin
 • stylistic uses (North German etc.: ‘ja’)
 – other airstream mechanisms:

 – glottalic – larynx used as a piston
 • both ingressive and egressive
 – velaric / lingual / oral – tongue creates airflow
 • only ingressive found naturally (clicks)
 • except Damin again!
Glottalic ingressives

• Implosives
 – only plosives

• Larynx lowers
 – acts like plunger in a syringe
 – reduces air pressure above it
 – release closure, air sucked in

• Tend to be voiced – vocal folds vibrate
 – Voiceless implosives are found (Lendu)
Glottalic egressives

- **Ejectives**
 - only obstruents (plosive, fricatives, affricates)

- **larynx raises**
 - works like a piston
 - compresses air above it
 - can’t maintain frication for long

- **only voiceless**
 - vocal folds must be tightly adducted = glottal stop
 - some ejectives stronger than others
 - do occur in English! word-final voiceless plosives
Velaric ingressives

• Clicks
 • utilise sucking mechanism
 – create velar closure (may be uvular too)
 – create second closure (at lips, or with front of tongue)
 – closures are simultaneous
 • retract tongue between the two closures
 – release front closure – air sucked in
 – Damin has velaric egressives (obviously!)
• Common paralinguistically
 – as consonants in southern (and eastern) Africa
Velaric ingressives

low pressure

[kO]
Summary of airstreams

<table>
<thead>
<tr>
<th></th>
<th>ingressive</th>
<th>egressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>pulmonic</td>
<td>(stylistic)</td>
<td>universal</td>
</tr>
<tr>
<td>glottalic</td>
<td>implosive</td>
<td>ejective</td>
</tr>
<tr>
<td>velaric</td>
<td>clicks</td>
<td>(Damin)</td>
</tr>
</tbody>
</table>
Voicing

• The third aspect of defining pulmonic consonants
 – contrast for obstruents (plosives & fricatives)

• Voicing relates to vocal fold vibration
 – typically seen as presence (voiced) vs. absence (voiceless)
 • slightly more complicated (aspiration)…

 – vocal fold vibration is
 • periodic (periodicity)

 – rate of vibration can be measured
 • fundamental frequency (F0)
 • measured in Hertz (Hz) = repetitions per second

 – voice quality
 • vocal fold vibration can have different characteristics
Voice

Aerodynamically driven
Vocal folds driven apart from below

• air pressure opens them
• air rushes through the gap (glottis)
• pressure falls in rushing air (cf. slamming doors on a windy day)
• vocal folds spring back together

Cycle starts again

(image from Stevens 1998)
Voicing

• Typical rates of vibrations
 – adult male = 125 Hz
 – adult female = 200 Hz
 – 3 year old child = 300-400 Hz
 • Flies’ wings vibrate around 170 Hz

• Rate of vibration = F0
 – related to sensation of pitch in voiced sounds
 – one reason why males have lower pitched voices than females
Voicing

Repeated pattern seen in nasal (at left) and following vowel (at right)
Aspiration

- English voiceless fricatives have no vocal fold vibration
- Voiceless plosives also have no vocal fold vibration
 - but there is an additional property
 - voicing does not begin immediately after the release of a voiceless plosive in English
 - there is a delay between release and voice onset
 - during the delay – vocal folds close from wide position
 - airflow through the vocal folds creates turbulence
 - first oral, then glottal
 - called ‘aspiration’
Vowels

• All languages have voiced vowels
 – Vowels differ from consonants
 – Vowels lack aerodynamically significant constrictions
 • they have a single manner (vowel)
 • they do not show a particular constriction location (place)
 • they do not – in most languages – contrast for voicing

• How do we describe vowels?
The vowel quadrilateral

Front Central Back

Close \(\text{i} \bullet \text{y} \) \(\text{i} \bullet \text{u} \) \(\text{u} \bullet \text{u} \)

Close-mid \(\text{e} \bullet \phi \) \(\text{e} \bullet \theta \) \(\gamma \bullet \text{o} \)

Open-mid \(\varepsilon \bullet \rho \) \(\varepsilon \bullet \theta \) \(\lambda \bullet \text{a} \)

Open \(\text{a} \bullet \rho \) \(\rho \bullet \rho \) \(\alpha \bullet \text{a} \)

Where symbols appear in pairs, the one to the right represents a rounded vowel.
The vowel quadrilateral

- Semi-articulatory, semi-auditory
 - Vowel height defines two extremes
 • close/high vs. open/low
 - Vowel fronting defines two extremes
 • front vs. back
 - Lip-rounding
 • rounded vs. unrounded (spread vs. neutral)

- Points between these extremes are auditory
 • impression that points are equidistant
Transcription

• Spelling is unreliable
 – see vs. sea vs. C
 – rough vs. cough vs. though vs. plough vs. through

• Digraphs
 – English <th>
 • voiceless in ‘thin’
 • voiced in ‘then’
 – Not actually two sounds
 » pothole vs. other

• Different languages
 – English <sh> = German <sch>, French <ch>, Hungarian <s>,
 Welsh <si>, Norwegian <sj>, Turkish <ṣ>, Russian <ɯ>, Arabic
 <ش> etc., <
Transcription

• IPA symbols give us a set of agreed symbols
• based on known human speech production capabilities
• Convert speech into a series of segmental symbols

• Important
 – speech is not static, it is dynamic
 – languages do not manage transitions in the same way
 – some aspects of movement linguistically significant
Plosive

- Complete constriction

- Plosive = oral stop
 - complete oral constriction
 - velum raised
 - no airflow
 - oral pressure increases
 - released explosively

(Images from Ashby & Maidment 2005)
Plosive
Phonetics vs. phonology

• How many sounds does a language have?
 – Depends what we mean by sound…

 – Phonetically distinct sounds (*phones*)?
 • glottal vs. alveolar plosive in ‘cat’
 • laminal fricative in ‘sheep’ vs. apical fricative in ‘shark’
 • oral vowel in ‘bid’ vs. nasal vowel in ‘bin’
 • central vowel in ‘cud’ vs. retracted vowel in ‘cull’

 – Lexically contrastive sounds (*phonemes*)?
 • fan vs. pan
 • ram vs. lamb
 • sin vs. shin
 • ten vs. tan
Phonetics vs. phonology

• Phonetics is about physics – actual sounds
 – articulatory differences
 – acoustic differences

• Phonology is about function – patterns of sounds
 – contrastive differences
 – systematic contextual variants
 – alternations

• We use brackets to indicate whether IPA symbols are used phonetically or phonologically
Phonetics vs. phonology

• Use /slash brackets/ for phonemic transcription
 – symbolising phonemes
 – also called broad transcription
 – the ideal alphabetical writing system
 • only represent lexical contrasts

• Use [square brackets] for phonetic transcription
 – symbolising phones
 – also called narrow transcription
 – a very imperfect writing system!
 • represent any tiny detail
Phonemes & allophones

• Phonetically distinct sounds (*phones*)
 – glottal vs. alveolar plosive in ‘cat’
 – laminal fricative in ‘sheep’ vs. apical fricative in ‘shark’
 – oral vowel in ‘bid’ vs. nasal vowel in ‘bin’
 – central vowel in ‘cud’ vs. retracted vowel in ‘cull’

• These are all contextual variants
 – they occur systematically in different contexts
 – complementary distribution – *never contrastive* in English

• These are allophones of different phonemes
 – allophone = variant
Next week...

• More on phonemes & allophones
• English allophonic processes
• Crosslinguistic differences
Reading

 – chapters 2, 5 & 9

 – chapter 5

 – section 4.3, chapters 5 & 6

Questions? Email Mark: markjjones@cantab.net